REFERENCES

1. Edalati, P.; Mohammadi, A.; Ketabchi, M.; Edalati, K. Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC. J. Alloys. Compd. 2022, 894, 162413.

2. Edalati, P.; Mohammadi, A.; Tang, Y.; Floriano, R.; Fuji, M.; Edalati, K. Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion. Mater. Lett. 2021, 302, 130368.

3. Yeh, J.; Chen, S.; Lin, S.; et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299-303.

4. Edalati, P.; Mohammadi, A.; Ketabchi, M.; Edalati, K. Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion. J. Alloys. Compd. 2021, 884, 161101.

5. Kim, K.; Warren, P.; Cantor, B. Glass-forming ability of novel multicomponent (Ti33Zr33Hf33)-(Ni50Cu50)-Al alloys developed by equiatomic substitution. Mater. Sci. Eng. A. 2004, 375-377, 317-21.

6. An, Z.; Mao, S.; Yang, T.; et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater. Horiz. 2021, 8, 948-55.

7. Liao, Y.; Li, T.; Tsai, P.; et al. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys. Intermetallics 2020, 117, 106673.

8. Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall. Mater. Trans. A. 2018, 49, 2876-92.

9. Pang, J.; Zhang, H.; Zhang, L.; et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Maters. Lett. 2021, 290, 129428.

10. Wang, S.; Ma, E.; Xu, J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution. Intermetallics 2019, 107, 15-23.

11. Wang, L.; Chen, S.; li, B.; et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Sci. Eng. A. 2021, 814, 141234.

12. Lei, Z.; Liu, X.; Wu, Y.; et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546-50.

13. Lilensten, L.; Couzinié, J.; Perrière, L.; et al. Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta. Mater. 2018, 142, 131-41.

14. Vystavěl, T.; Jacques, A.; Gemperle, A.; Gemperlová, J.; George, A. Dislocation interaction with a Σ=3 grain boundary observed by in situ TEM. Mater. Sci. Forum.1998, 294-6,397-400. Available from: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1576291. [Last accessed on 20 Jan 2025].

15. Cheng, S.; Spencer, J.; Milligan, W. Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta. Mater. 2003, 51, 4505-18.

16. Horita, Z.; Smith, D. J.; Furukawa, M.; Nemoto, M.; Valiev, R. Z.; Langdon, T. G. An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 1996, 11, 1880-90.

17. Toby, B. H.; Von, D. R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544-9.

18. Yi, H. L.; Chang, Z. Y.; Cai, H. L.; Du, P. J.; Yang, D. P. Strength, ductility and fracture strain of press-hardening steels. Acta Metall. Sin.2020, 56, 429-43. Available from: https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00003. [Last accessed on 20 Jan 2025].

19. Wu, Y.; Cai, Y.; Wang, T.; et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Maters. Letts. 2014, 130, 277-80.

20. Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Cryst. 1999, 32, 992-1002.

21. Lee, C.; Kim, G.; Chou, Y.; et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Sci. Adv. 2020, 6.

22. Lee, C.; Maresca, F.; Feng, R.; et al. Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nat. Commun. 2021, 12, 5474.

23. Dirras, G.; Gubicza, J.; Heczel, A.; et al. Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 2015, 108, 1-7.

24. Chen, Y.; Xu, Z.; Wang, M.; Li, Y.; Wu, C.; Yang, Y. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties. Mater. Sci. Eng. A. 2020, 792, 139774.

25. Nguyen, V.; Qian, M.; Shi, Z.; Song, T.; Huang, L.; Zou, J. Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. Mater. Sci. Eng. A. 2019, 742, 762-72.

26. Wei, S.; Kim, S. J.; Kang, J.; et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 2020, 19, 1175-81.

27. Zhang, Y.; Bu, Z.; Yao, T.; Yang, L.; Li, W.; Li, J. Novel BCC Ti-Al-Nb-Zr medium-entropy alloys with ultrahigh specific strength and ductility. J. Alloys. and. Compd. 2023, 936, 168290.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/