REFERENCES
1. Harris SJ, Lu P. Effects of inhomogeneities-nanoscale to mesoscale-on the durability of Li-ion batteries. J Phys Chem C 2013;117:6481-92.
2. Finegan DP, Vamvakeros A, Tan C, et al. Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes. Nat Commun 2020;11:631.
3. Park J, Zhao H, Kang SD, et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nat Mater 2021;20:991-99.
4. Wang L, Wang J, Zuo P. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques. Small Methods 2018;2:1700293.
5. Lim J, Li Y, Alsem DH, et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 2016;353:566-71.
6. Ohmer N, Fenk B, Samuelis D, et al. Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery. Nat Commun 2015;6:6045.
7. Merryweather AJ, Schnedermann C, Jacquet Q, Grey CP, Rao A. Operando optical tracking of single-particle ion dynamics in batteries. Nature 2021;594:522-8.
8. Xu Z, Hou D, Kautz DJ, et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single-particle synchrotron measurements. Adv Mater 2020;32:2003417.
9. Quinn A, Moutinho H, Usseglio-Viretta F, Verma A, Smith K, et al. Electron backscatter diffraction for investigating lithium-ion electrode particle architectures. Cell Rep Phys Sci 2020;1:100137.
10. Xu Y, Hu E, Zhang K, et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett 2017;2:1240-5.
11. Singer A, Zhang M, Hy S, et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat Energy 2018;3:641-47.
12. Martens I, Vostrov N, Mirolo M, et al. Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel. Nat Commun 2023;14:6975.
13. Cha W, Song S, Jeong NC, et al. Exploration of crystal strains using coherent x-ray diffraction. New J Phys 2010;12:035022.
14. Chahine GA, Richard MI, Homs-Regojo RA, et al. Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping. J Appl Cryst 2014;47:762-9.
15. Leake SJ, Favre-Nicolin V, Zatterin E, et al. Coherent nanoscale X-ray probe for crystal interrogation at ID01, ESRF - The European Synchrotron. Mater Des 2017;119:470-1.
16. Leake SJ, Chahine GA, Djazouli H, et al. The Nanodiffraction beamline ID01/ESRF: a microscope for imaging strain and structure. J Synchrotron Radiat 2019;26:571-84.
17. Martens I, Vanpeene V, Vostrov N, et al. Imaging voids and defects inside Li-ion cathode LiNi0.6Mn0.2Co0.2O2 single crystals. ACS Appl Mater Interfaces 2023;15:59319-28.
18. Purushottam Raj Purohit RRP, Tardif S, Castelnau O, et al. LaueNN: neural-network-based hkl recognition of Laue spots and its application to polycrystalline materials. J Appl Cryst 2022;55:737-50.
19. Rauch EF, Véron M. Automated crystal orientation and phase mapping in TEM. Mat Charact 2014;98:1-9.
20. Carnis J, Gao L, Labat S, et al. Towards a quantitative determination of strain in bragg coherent X-ray diffraction imaging: artefacts and sign convention in reconstructions. Sci Rep 2019;9:17357.
21. Li J, Hong Y, Yan H, et al. Probing lattice defects in crystalline battery cathode using hard X-ray nanoprobe with data-driven modeling. Energy Stor Mater 2022;45:647-55.
22. Liu X, Xu GL, Kolluru VSC, et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat Energy 2022;7:808-17.
23. Li S, Qian G, He X, et al. Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes. Nat Commun 2022;13:704.
24. Zhang SS. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor Mater 2020;24:247-54.
25. Lin CK, Ren Y, Amine K, Qin Y, Chen Z. In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery. J Power Sources 2013;230:32-7.
26. Borkiewicz OJ, Wiaderek KM, Chupas PJ, Chapman KW. Best practices for operando battery experiments: influences of X-ray experiment design on observed electrochemical reactivity. J Phys Chem Lett 2015;6:2081-5.
27. Corley-Wiciak C, Zoellner MH, Zaitsev I, et al. Lattice deformation at the sub-micron scale: X-ray nanobeam measurements of elastic strain in electron shuttling devices. Phys Rev Appl 2023;20:024056.
28. Corley-Wiciak C, Richter C, Zoellner MH, et al. Nanoscale mapping of the 3D strain tensor in a germanium quantum well hosting a functional spin qubit device. ACS Appl Mater Interfaces 2023;15:3119-30.
29. Li Y, Zatterin E, Conroy M, et al. Electrostatically driven polarization flop and strain-induced curvature in free-standing ferroelectric superlattices. Adv Mater 2022;34:2106826.
30. Mapping the complex evolution of ferroelastic/ferroelectric domain patterns in epitaxially strained PbTiO3 heterostructures. APL Mater 2023;11: 061126.
32. Thomas V, Damien N, Carsten R, Edoardo Z, Ang Z. xsocs. Zenodo 2024; doi: 10.5281/zenodo.10777449.
33. Vostrov N, Martens I, Colalongo M, et al. Plastic deformation of LiNi0.5Mn1.5O4 single crystals due to domain orientation dynamics. ChemRxiv 2023; doi: 10.26434/chemrxiv-2023-7t1td.
34. Choudhary K, Santos Mendoza IO, Nadeina A, et al. Operando X-ray diffraction in transmission geometry? at home? from tape casted electrodes to all-solid-state battery. J Power Sources 2023;553:232270.
35. Wolfman M, May BM, Cabana J. Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping. Chem Mater 2017;29:3347-62.
36. Ulvestad A, Cho HM, Harder R, et al. Nanoscale strain mapping in battery nanostructures. Appl Phys Lett 2014;104:073108.
37. Li L, Xie Y, Maxey E, Harder R. Methods for operando coherent X-ray diffraction of battery materials at the advanced photon source. J Synchrotron Radiat 2019;26:220-9.
38. Robinson IK, Vartanyants IA, Williams GJ, Pfeifer MA, Pitney JA. Reconstruction of the shapes of gold nanocrystals using coherent X-Ray diffraction. Phys Rev Lett 2001;87:195505.
39. Pfeifer MA, Williams GJ, Vartanyants IA, Harder R, Robinson IK. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 2006;442:63-6.
40. Li Y, El Gabaly F, Ferguson TR, et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat Mater 2014;13:1149-56.
41. Dreyer W, Jamnik J, Guhlke C, et al. The thermodynamic origin of hysteresis in insertion batteries. Nat Mater 2010;9:448-53.
42. Huang JJ, Weinstock D, Hirsh H, et al. Disorder dynamics in battery nanoparticles during phase transitions revealed by operando single‐particle diffraction. Adv Energy Mater 2022;12:2103521.
43. Li Y, Li X, Du C, et al. Degradation by kinking in layered cathode materials. ACS Energy Lett 2021;6:3960-9.
44. Sharifi-Asl S, Yurkiv V, Gutierrez A, et al. Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode materials. Nano Lett 2020;20:1208-17.
45. Lee SY, Park GS, Jung C, et al. Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation. Adv Sci 2019;6:1800843.
46. Shen K, Wang Y, Zhang J, et al. Revealing the effect of grain boundary segregation on Li ion transport in polycrystalline anti-perovskite Li 3 ClO: a phase field study. Phys Chem Chem Phys 2020;22:3030-6.
47. Xu Z, Jiang Z, Kuai C, et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nat Commun 2020;11:83.
48. Fujii Y, Miura H, Suzuki N, Shoji T, Nakayama N. Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2: calcination temperature dependence. J Power Sources 2007;171:894-903.
49. Langdon J, Manthiram A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Stor Mater 2021;37:143-60.
50. Meng XH, Lin T, Mao H, et al. Kinetic origin of planar gliding in single-crystalline Ni-rich cathodes. J Am Chem Soc 2022;144:11338-47.
51. Wang T, Ren K, He M, et al. Synthesis and manipulation of single-crystalline lithium nickel manganese cobalt oxide cathodes: a review of growth mechanism. Front Chem 2020;8:00747.
52. Robinson I, Harder R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 2009;8:291-8.