REFERENCES
1. Chen, W.; Wunderlich, B. Nanophase separation of small and large molecules. Macromol. Chem. Phys. 1999, 200, 283-311.
2. Erickson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online. 2009, 11, 32-51.
3. Kong, G.; Liu, R.; Lu, J.; Che, C.; Zhong, Z. Insight for microstructure research of materials. Acta. Metall. Sin. 2010, 46, 487-93.
5. Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 2001, 40, 4128-58.
6. De Clercq, P. We need to talk about Kekule: The 150th anniversary of the benzene structure. Eur. J. Org. Chem. 2022, 2022, e202200171.
7. Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. JAMA. 1993, 269, 1966-7.
8. Bai, X. C.; McMullan, G.; Scheres, S. H. How cryo-EM is revolutionizing structural biology. Trends. Biochem. Sci. 2015, 40, 49-57.
9. Huang, Y.; Yang, C.; Xu, X. F.; Xu, W.; Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta. Pharmacol. Sin. 2020, 41, 1141-9.
10. Olsbye, U.; Svelle, S.; Lillerud, K. P.; et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem. Soc. Rev. 2015, 44, 7155-76.
11. Dominguez-Soria, V. D.; Calaminici, P.; Goursot, A. Theoretical study of host-guest interactions in the large and small cavities of MOR zeolite models. J. Phys. Chem. C. 2011, 115, 6508-12.
12. Dias, D. A.; Jones, O. A.; Beale, D. J.; et al. Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites 2016, 6, 46.
13. Franklin, R. E.; Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740-1.
14. Cichocka, M. O.; Ångström, J.; Wang, B.; Zou, X.; Smeets, S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 2018, 51, 1652-61.
15. Zhang, Y. B.; Su, J.; Furukawa, H.; et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 2013, 135, 16336-9.
16. Wang, B.; Rhauderwiek, T.; Inge, A. K.; et al. A Porous cobalt tetraphosphonate metal-organic framework: accurate structure and guest molecule location determined by continuous-rotation electron diffraction. Chemistry 2018, 24, 17429-33.
17. Morgan, T. J.; George, A.; Davis, D. B.; Herod, A. A.; Kandiyoti, R. O Optimization of 1H and 13C NMR methods for structural characterization of acetone and pyridine soluble/insoluble fractions of a coal tar pitch. Energy. Fuels. 2008, 22, 1824-35.
18. Kwan, A. H.; Mobli, M.; Gooley, P. R.; King, G. F.; Mackay, J. P. Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS. J. 2011, 278, 687-703.
19. Singh, K. S.; Majik, M. S.; Tilvi, S. Chapter 6 - Vibrational spectroscopy for structural characterization of bioactive compounds. Compr. Anal. Chem. 2014, 65, 115-48.
20. Zhang, Z.; Chen, C. L.; Chen, Y. A.; et al. Tuning the conformation and color of conjugated polyheterocyclic skeletons by installing ortho-methyl groups. Angew. Chem. Int. Ed. 2018, 57, 9880-4.
21. Hong, T.; Yin, J. Y.; Nie, S. P.; Xie, M. Y. Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food. Chem. X. 2021, 12, 100168.
22. Cai, Z.; Kumar, N.; Zenobi, R. Probing on-surface chemistry at the nanoscale using tip-enhanced raman spectroscopy. CCS. Chem. 2023, 5, 55-71.
23. Park, H.; DiMaio, F.; Baker, D. The origin of consistent protein structure refinement from structural averaging. Structure 2015, 23, 1123-8.
25. Wang, Y.; Zhang, X.; Xu, J.; et al. The development of microscopic imaging technology and its application in micro- and nanotechnology. Front. Chem. 2022, 10, 931169.
26. Tanaka, N. Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials. Sci. Technol. Adv. Mater. 2008, 9, 014111.
27. Guzzinati, G.; Altantzis, T.; Batuk, M.; et al. Recent advances in transmission electron microscopy for materials science at the EMAT lab of the university of Antwerp. Materials 2018, 11, 1304.
28. Rauch, E. F.; Véron, M.; Nicolopoulos, S.; Bultreys, D. Orientation and phase mapping in TEM microscopy (EBSD-TEM like): applications to materials science. Solid. State. Phenomena. 2012, 186, 13-5.
29. Pennycook, S. J.; Chisholm, M. F.; Lupini, A. R.; et al. Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Philos. Trans. A. Math. Phys. Eng. Sci. 2009, 367, 3709-33.
30. Scherzer, O. The theoretical resolution limit of the electron microscope. J. App. Phys. 1949, 20, 20-9.
31. Krivanek, O. L.; Corbin, G. J.; Dellby, N.; et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 2008, 108, 179-95.
32. Spence, J. The future of atomic resolution electron microscopy for materials science. Mater. Sci. Eng. R. Rep. 1999, 26, 1-49.
33. Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K. Electron microscopy image enhanced. Nature 1998, 392, 768-9.
34. Rummeli, M. H.; Ta, H. Q.; Mendes, R. G.; et al. New frontiers in electron beam-driven chemistry in and around graphene. Adv. Mater. 2019, 31, e1800715.
35. Bachmatiuk, A.; Zhao, J.; Gorantla, S. M.; et al. Low voltage transmission electron microscopy of graphene. Small 2015, 11, 515-42.
36. Gong, X.; Gnanasekaran, K.; Chen, Z.; et al. Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy. J. Am. Chem. Soc. 2020, 142, 17224-35.
37. Williams, D. B.; Carter, C. B. Transmission electron microscopy: a textbook for materials science; New York, NY: Springer, 2009.
39. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399-409.
40. Ding, Z. J.; Li, C.; Da, B.; Liu, J. Charging effect induced by electron beam irradiation: a review. Sci. Technol. Adv. Mater. 2021, 22, 932-71.
41. Dubochet, J.; Adrian, M.; Chang, J. J.; et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 1988, 21, 129-228.
42. Chari, A.; Stark, H. Prospects and limitations of high-resolution single-particle cryo-electron microscopy. Annu. Rev. Biophys. 2023, 52, 391-411.
43. Li, Y.; Kang, D.; Dai, J.; Wang, L. The cage effect of electron beam irradiation damage in cryo-electron microscopy. NPJ. Comput. Mater. 2024, 10, 1299.
44. Henderson, R.; Clarke, B. C. Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc. R. Soc. Lond. B. 1990, 241, 6-8.
45. Hugenschmidt, M.; Adrion, K.; Marx, A.; Müller, E.; Gerthsen, D. Electron-beam-induced carbon contamination in STEM-in-SEM: quantification and mitigation. Microsc. Microanal. 2023, 29, 219-34.
46. McGilvery, C. M.; Goode, A. E.; Shaffer, M. S.; McComb, D. W. Contamination of holey/lacey carbon films in STEM. Micron 2012, 43, 450-5.
47. Egerton, R. F.; Rossouw, C. J. Direct measurement of contamination and etching rates in an electron beam. J. Phys. D. Appl. Phys. 1976, 9, 659-63.
48. Zaluzec, N. J.; Kestel, B. J.; Henriks, D. Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy. Microsc. Microanal. 1997, 3, 983-4.
49. Hettler, S.; Dries, M.; Hermann, P.; Obermair, M.; Gerthsen, D.; Malac, M. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications. Micron 2017, 96, 38-47.
50. Mitchell, D. R. Contamination mitigation strategies for scanning transmission electron microscopy. Micron 2015, 73, 36-46.
51. Dobro, M. J.; Melanson, L. A.; Jensen, G. J.; Mcdowall, A. W. Chapter three - plunge freezing for electron cryomicroscopy Methods Enzymol 2010. pp. 63-82.
52. Hurbain, I.; Sachse, M. The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol. Cell. 2011, 103, 405-20.
53. Li, Y.; Wang, K.; Zhou, W.; et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 2019, 1, 428-38.
54. Lee, J.; Lee, Y.; Kim, J.; Lee, Z. Contrast transfer function-based exit-wave reconstruction and denoising of atomic-resolution transmission electron microscopy images of graphene and Cu single atom substitutions by deep learning framework. Nanomaterials 2020, 10, 1977.
55. Zhang, D.; Zhu, Y.; Liu, L.; et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675-9.
56. Milazzo, A. C.; Leblanc, P.; Duttweiler, F.; et al. Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 2005, 104, 152-9.
57. Faruqi, A. R.; Mcmullan, G. Direct imaging detectors for electron microscopy.In: Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment; 2018, pp. 180-90.
58. Kuijper, M.; van Hoften, G.; Janssen, B.; et al. FEI's direct electron detector developments: Embarking on a revolution in cryo-TEM. J. Struct. Biol. 2015, 192, 179-87.
59. Levin, B. D. A. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 2021, 4, 042005.
60. Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Imaging of single organic molecules in motion. Science 2007, 316, 853.
61. Skowron, S. T.; Chamberlain, T. W.; Biskupek, J.; Kaiser, U.; Besley, E.; Khlobystov, A. N. Chemical reactions of molecules promoted and simultaneously imaged by the electron beam in transmission electron microscopy. ACC. Chem. Res. 2017, 50, 1797-807.
62. Umeyama, T.; Baek, J.; Sato, Y.; et al. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy. Nat. Commun. 2015, 6, 7732.
63. Zhu, Y.; Ciston, J.; Zheng, B.; et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat. Mater. 2017, 16, 532-6.
64. Peng, Y.; Huang, Y.; Zhu, Y.; et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698-704.
65. Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 2019, 119, 72-87.
66. Lazić, I.; Bosch, E. G. T.; Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 2016, 160, 265-80.
67. Lin, Y.; Zhou, M.; Tai, X.; Li, H.; Han, X.; Yu, J. Analytical transmission electron microscopy for emerging advanced materials. Matter 2021, 4, 2309-39.
68. Bosch, E. G.; Lazić, I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy 2015, 156, 59-72.
69. Lazić, I.; Bosch, E. G. T. Chapter Three - Analytical review of direct stem imaging techniques for thin samples Adv Imaging Electron Phys 2017. pp. 75-184.
70. Cowley, J. M. Scanning transmission electron microscopy of thin specimens. Ultramicroscopy 1976, 2, 3-16.
71. Shen, B.; Chen, X.; Wang, H.; et al. A single-molecule van der Waals compass. Nature 2021, 592, 541-4.
72. Shen, B.; Wang, H.; Xiong, H.; et al. Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature 2022, 607, 703-7.
73. Feng, J.; Ma, M.; Song, B.; Shen, B. Atomic single-molecule imaging by the confinement methods in advanced microscopy. Fundam Res 2024.
74. Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 2012, 335, 317-9.
75. Molina, L. M.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B. 2004, 69, 155424.
77. Yuan, W.; Zhu, B.; Li, X. Y.; et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020, 367, 428-30.
78. Panagiotopoulou, P.; Kondarides, D. I. Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction. J. Catal. 2004, 225, 327-36.
79. Xiong, H.; Liu, Z.; Chen, X.; et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 2022, 376, 491-6.
80. de Jonge, N.; Poirier-Demers, N.; Demers, H.; Peckys, D. B.; Drouin, D. Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 2010, 110, 1114-9.
81. Wang, H.; Li, B.; Kim, Y. J.; Kwon, O. H.; Granick, S. Intermediate states of molecular self-assembly from liquid-cell electron microscopy. Proc. Natl. Acad. Sci. USA. 2020, 117, 1283-92.
82. Nagamanasa, K. H.; Wang, H.; Granick, S. Liquid-cell electron microscopy of adsorbed polymers. Adv. Mater. 2017, 29, 1703555.
83. Dahmke, I. N.; Verch, A.; Hermannsdörfer, J.; et al. Graphene liquid enclosure for single-molecule analysis of membrane proteins in whole cells using electron microscopy. ACS. Nano. 2017, 11, 11108-17.
84. Findlay, S. D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 2010, 110, 903-23.
85. Ooe, K.; Seki, T.; Yoshida, K.; et al. Direct imaging of local atomic structures in zeolite using optimum bright-field scanning transmission electron microscopy. Sci. Adv. 2023, 9, eadf6865.
86. Peters, J. J. P.; Reed, B. W.; Jimbo, Y.; et al. Event-responsive scanning transmission electron microscopy. Science 2024, 385, 549-53.
87. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 2019, 25, 563-82.
88. Yu, R.; Sha, H.; Cui, J.; Yang, W. Introduction to electron ptychography for materials scientists. Microstructures 2024, 4, 2024056.
89. Jiang, Y.; Chen, Z.; Han, Y.; et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343-9.
90. Chen, Z.; Jiang, Y.; Shao, Y. T.; et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 2021, 372, 826-31.
91. Yang, W.; Sha, H.; Cui, J.; Mao, L.; Yu, R. Local-orbital ptychography for ultrahigh-resolution imaging. Nat. Nanotechnol. 2024, 19, 612-7.
92. Nguyen, K. X.; Jiang, Y.; Lee, C. H.; et al. Achieving sub-0.5-angstrom-resolution ptychography in an uncorrected electron microscope. Science 2024, 383, 865-70.
93. Gao, S.; Wang, P.; Zhang, F.; et al. Electron ptychographic microscopy for three-dimensional imaging. Nat. Commun. 2017, 8, 163.
94. Zhou, L.; Song, J.; Kim, J. S.; et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Nat. Commun. 2020, 11, 2773.
95. Pei, X.; Zhou, L.; Huang, C.; et al. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat. Commun. 2023, 14, 3027.
96. Sha, H.; Cui, J.; Li, J.; et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci. Adv. 2023, 9, eadf1151.
97. Pennycook, T. J.; Martinez, G. T.; Nellist, P. D.; Meyer, J. C. High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy 2019, 196, 131-5.