REFERENCES
1. Liu, T.; Wang, L.; Liu, X.; et al. Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem. Eng. J. 2020, 379, 122379.
2. Li, R.; Heuer, J.; Kuckhoff, T.; Landfester, K.; Ferguson, C. T. J. pH-triggered recovery of organic polymer photocatalytic particles for the production of high value compounds and enhanced recyclability. Angew. Chem. Int. Ed. 2023, 62, e202217652.
3. Shao, J.; Deng, K.; Chen, L.; et al. Aqueous synthesis of Nb-modified SnO2 quantum dots for efficient photocatalytic degradation of polyethylene for in situ agricultural waste treatment. Green. Process. Synth. 2021, 10, 499-506.
4. Liu, J.; Liang, L.; Su, B.; et al. Transformative strategies in photocatalyst design: merging computational methods and deep learning. J. Mater. Inf. 2024, 4, 33.
5. Fei, H.; Wu, J.; Zhang, J.; et al. Photocatalytic performance and its internal relationship with hydration and carbonation of photocatalytic concrete: a review. J. Build. Eng. 2024, 97, 110782.
6. Bui, V. K. H.; Nguyen, T. N.; Van Tran, V.; et al. Photocatalytic materials for indoor air purification systems: an updated mini-review. Environ. Technol. Innov. 2021, 22, 101471.
7. Wang, Y.; Su, N.; Liu, J.; et al. Enhanced visible-light photocatalytic properties of SnO2 quantum dots by niobium modification. Results. Phys. 2022, 37, 105515.
8. Li, F.; Liu, G.; Liu, F.; Yang, S. A review of self-cleaning photocatalytic surface: effect of surface characteristics on photocatalytic activity for NO. Environ. Pollut. 2023, 327, 121580.
9. Wu, T.; Yang, Y.; Zhao, Q.; et al. Photocatalytic membranes toward practical environmental remediation: fundamental, fabrication, and application. Adv. Sustain. Syst. 2024, 8, 2300374.
10. Liu, J.; Zhang, Q.; Tian, X.; et al. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem. Eng. J. 2021, 404, 127146.
11. Liu, Y.; Jiang, L.; Tian, Y.; et al. Covalent organic framework/g-C3N4 van der Waals heterojunction toward H2 production. Inorg. Chem. 2023, 62, 3271-7.
12. Sun, H.; Shi, Y.; Shi, W.; Guo, F. High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: interfacial charge transfer and mechanism insight. Appl. Surf. Sci. 2022, 593, 153281.
13. Zhang, H.; Li, M. M. Crafting an active center with a local charge density gradient to facilitate photocatalytic ethylene production from CO2. Curr. Opin. Green. Sustain. Chem. 2022, 36, 100646.
14. Wang, Q.; Wang, J.; Wang, J. C.; et al. Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction. ChemSusChem 2021, 14, 1131-9.
15. Pei, W.; Zhang, W.; Yu, X.; et al. Computational design of spatially confined triatomic catalysts for nitrogen reduction reaction. J. Mater. Inf. 2023, 3, 26.
16. Zhang, F.; Wang, X.; Liu, H.; et al. Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 2019, 9, 2489.
17. Ma, B.; Li, X.; Li, D.; Lin, K. A difunctional photocatalytic H2 evolution composite co-catalyst tailored by integration with earth-abundant material and ultralow amount of noble metal. Appl. Catal. B. Environ. 2019, 256, 117865.
18. Liu, J.; Qu, X.; Zhang, C.; et al. High-yield aqueous synthesis of partial-oxidized black phosphorus as layered nanodot photocatalysts for efficient visible-light driven degradation of emerging organic contaminants. J. Clean. Prod. 2022, 377, 134228.
19. Wu, Y.; Zhong, L.; Yuan, J.; et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review. Environ. Chem. Lett. 2021, 19, 1335-46.
20. Bai, Y.; Hu, Z.; Jiang, J. X.; Huang, F. Hydrophilic conjugated materials for photocatalytic hydrogen evolution. Chem. Asian. J. 2020, 15, 1780-90.
21. Wu, D.; Liu, X.; Liu, J.; Akhtar, A.; Fu, C. Hydrothermal synthesis of Z-scheme photocatalyst Zn2SnO4-g-C3N4 for efficient tetracycline antibiotic removal. Diam. Relat. Mater. 2024, 141, 110572.
22. Zhao, D.; Wu, X.; Gu, X.; Liu, J. Investigation into the degradation of air and runoff pollutants using nano g-C3N4 photocatalytic road surfaces. Constr. Build. Mater. 2024, 411, 134553.
23. Yusuf, A. O.; Jitan, S. A.; Al Sakkaf, R.; et al. 3D printing to enable photocatalytic process engineering: a critical assessment and perspective. Appl. Mater. Today. 2023, 35, 101940.
24. Lu, S.; Liu, H. Molecular doping on carbon nitride for efficient photocatalytic hydrogen production. Langmuir 2024, 40, 13331-8.
25. Bui, V. K. H.; Tran, V. V.; Moon, J. Y.; Park, D.; Lee, Y. C. Titanium dioxide microscale and macroscale structures: a mini-review. Nanomaterials 2020, 10, 1190.
26. Wang, Y.; Wu, X.; Liu, J.; et al. Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J. Environ. Chem. Eng. 2022, 10, 107091.
27. Luo, T.; Gilmanova, L.; Kaskel, S. Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations. Coord. Chem. Rev. 2023, 490, 215210.
28. Younis, S. A.; Kwon, E. E.; Qasim, M.; et al. Metal-organic framework as a photocatalyst: progress in modulation strategies and environmental/energy applications. Prog. Energy. Combust. Sci. 2020, 81, 100870.
29. Li, R.; Zhang, W.; Zhou, K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, e1705512.
30. Deng, Y.; Liu, J.; Zhou, Z.; et al. Recent advances in piezoelectric coupled with photocatalytic reaction system: synergistic mechanism, enhancement factors, and application. ACS. Appl. Mater. Interfaces. 2024, 16, 50071-95.
31. Hamid, S. B. A.; Teh, S. J.; Lai, C. W. Photocatalytic water oxidation on ZnO: a review. Catalysts 2017, 7, 93.
32. Tak, S.; Grewal, S.; Shreya; et al. Mechanistic insights and emerging trends in photocatalytic dye degradation for wastewater treatment. Chem. Eng. Technol. 2024, 47, e202400142.
33. Gunawan, D.; Zhang, J.; Li, Q.; et al. Materials advances in photocatalytic solar hydrogen production: integrating systems and economics for a sustainable future. Adv. Mater. 2024, 36, e2404618.
34. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011-61.
35. Zhang, T.; Jin, Y.; Shi, Y.; Li, M.; Li, J.; Duan, C. Modulating photoelectronic performance of metal-organic frameworks for premium photocatalysis. Coord. Chem. Rev. 2019, 380, 201-29.
36. Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W.; Huo, F. Programmable logic in metal-organic frameworks for catalysis. Adv. Mater. 2021, 33, e2007442.
37. Gao, Z.; Iqbal, A.; Hassan, T.; Zhang, L.; Wu, H.; Koo, C. M. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 2022, 9, e2204151.
38. Liu, Y.; Huang, D.; Cheng, M.; et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coord. Chem. Rev. 2020, 409, 213220.
39. Saboor F, Shahsavari S, Zandjou M, Asgari M. From structure to catalysis: advances in metal-organic frameworks-based shape-selective reactions. ChemNanoMat 2024, 10, e202400049.
40. Cui, Y.; Zhao, Y.; Wu, J.; Hou, H. Recent discussions on homogeneous host-guest metal-organic framework composites in synthesis and catalysis. Nano. Today. 2023, 52, 101972.
41. Zhan, W.; Sun, L.; Han, X. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nanomicro. Lett. 2019, 11, 1.
42. Tasleem, S.; Tahir, M.; Khalifa, W. A. Current trends in structural development and modification strategies for metal-organic frameworks (MOFs) towards photocatalytic H2 production: a review. Int. J. Hydrogen. Energy. 2021, 46, 14148-89.
43. Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134-72.
44. Zhang, M. Y.; Li, J. K.; Wang, R.; Zhao, S. N.; Zang, S. Q.; Mak, T. C. W. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. 2021, 8, e2101884.
45. Qin, J.; Dou, Y.; Zhou, J.; et al. Encapsulation of carbon-nanodots into metal-organic frameworks for boosting photocatalytic upcycling of polyvinyl chloride plastic. Appl. Catal. B. Environ. 2024, 341, 123355.
46. Shi, Y.; Zou, Y.; Khan, M. S.; et al. Metal-organic framework-derived photoelectrochemical sensors: structural design and biosensing technology. J. Mater. Chem. C. 2023, 11, 3692-709.
47. Jiang, S.; Li, X. L.; Fang, D.; et al. Metal-organic-framework-derived 3D hierarchical matrixes for high-performance flexible Li-S batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 20064-74.
48. Han, B.; Li, F. Regulating the electrocatalytic performance for nitrogen reduction reaction by tuning the N contents in Fe3@NxC20-x
49. Khan, M. S.; Li, Y.; Li, D. S.; Qiu, J.; Xu, X.; Yang, H. Y. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale. Adv. 2023, 5, 6318-48.
50. Khan, M. S.; Zhu, S.; Chen, S. B. Metal-organic frameworks (MOFs) for oxo-anion removal in wastewater treatment: advancements and applications. Chem. Eng. J. 2024, 500, 157396.
51. Li, X.; He, Y.; Chen, J.; Li, Q.; Liu, P.; Li, J. Recent advances in rational design, synthesis and application of metal-organic frameworks as visible-light-driven photocatalysts. Inorg. Chem. Front. 2024, 11, 6794-852.
52. Doustkhah, E.; Esmat, M.; Fukata, N.; Ide, Y.; Hanaor, D. A. H.; Assadi, M. H. N. MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. Chemosphere 2022, 303, 134932.
53. Chen, Y.; Zhai, B.; Liang, Y.; Li, Y.; Li, J. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation. J. Solid. State. Chem. 2019, 274, 32-9.
54. Dong, W.; Jia, J.; Wang, Y.; et al. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chem. Eng. J. 2022, 438, 135622.
55. Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés, X. F. X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chemistry 2007, 13, 5106-12.
56. Zhu, C.; Hou, J.; Wang, X.; et al. Optimizing ligand-to-metal charge transfer in metal-organic frameworks to enhance photocatalytic performance. Chem. Eng. J. 2024, 499, 156527.
57. Bhattacharyya, A.; Gutiérrez, M.; Cohen, B.; Valverde-González, A.; Iglesias, M.; Douhal, A. How does the metal doping in mixed metal MOFs influence their photodynamics? A direct evidence for improved photocatalysts. Mater. Today. Energy. 2022, 29, 101125.
58. Mao, S.; Shi, J.; Sun, G.; et al. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: the effect of different Au positions on the transfer of electron-hole pairs. Appl. Catal. B. Environ. 2021, 282, 119550.
59. Mao, S.; Zou, Y.; Sun, G.; et al. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J. Colloid. Interface. Sci. 2021, 581, 1-10.
60. Wang, C.; Wang, X.; Liu, W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review. Chem. Eng. J. 2020, 391, 123601.
61. Chen, Z.; Cao, L.; Liu, A.; et al. Modulating the band gap of a pyrazinoquinoxaline-based metal-organic framework through orbital hybridization for enhanced visible light-driven C=N bond construction. J. Mater. Chem. A. 2024, 12, 30582-90.
62. Wang, C.; Yi, X.; Wang, P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B. Environ. 2019, 247, 24-48.
63. Li, H.; Gong, H.; Jin, Z. Phosphorus modified Ni-MOF-74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Appl. Catal. B. Environ. 2022, 307, 121166.
64. Gorle, D. B.; Ponnada, S.; Kiai, M. S.; et al. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J. Mater. Chem. B. 2021, 9, 7927-54.
65. Wen, C.; Li, R.; Chang, X.; Li, N. Metal-organic frameworks-based optical nanosensors for analytical and bioanalytical applications. Biosensors 2023, 13, 128.
66. Du, J.; Shi, F.; Wang, K.; et al. Metal-organic framework-based biosensing platforms for diagnosis of bacteria-induced infectious diseases. TrAC-Trend. Anal. Chem. 2024, 175, 117707.
67. Cai, C.; Fan, G.; Du, B.; et al. Metal-organic-framework-based photocatalysts for microorganism inactivation: a review. Catal. Sci. Technol. 2022, 12, 3767-77.
68. Pan, Y.; Abazari, R.; Yao, J.; Gao, J. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. J. Phys. Energy. 2021, 3, 032010.
69. Xiao, J. D.; Li, R.; Jiang, H. L. Metal-organic framework-based photocatalysis for solar fuel production. Small. Methods. 2023, 7, e2201258.
70. Liu, Y.; Zhao, M.; Ren, Y.; et al. Linker-exchanged zeolitic imidazolate framework membranes for efficient CO2 separation. J. Membr. Sci. 2024, 697, 122568.
71. Zahir, I. M.; Waqas, K. M.; Shaheen, M.; et al. 1,2,4,5-benzene-tetra-carboxylic acid and 2-methylimidazole bi-linker intercalated redox active copper organic framework for advanced battery-supercapacitor hybrids. J. Electroanal. Chem. 2023, 941, 117505.
72. Kamal, S.; Khalid, M.; Khan, M. S.; Shahid, M. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: an up to date tale of mechanism, current trends and future prospects. Coord. Chem. Rev. 2023, 474, 214859.
73. Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O'Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257-83.
74. Mandal, S.; Yoosefi, S.; Mengele, A. K.; Rau, S.; Pannwitz, A. Active molecular units in metal organic frameworks for artificial photosynthesis. Inorg. Chem. Front. 2024, 11, 7682-755.
75. Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.
76. Li, N.; Zhang, W.; Wang, D.; Li, G.; Zhao, Y. Synthesis and applications of TiO2-based nanostructures as photocatalytic materials. Chem. Asian. J. 2022, 17, e202200822.
77. Wu, X.; Xie, S.; Zhang, H.; Zhang, Q.; Sels, B. F.; Wang, Y. Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 2021, 33, e2007129.
78. Ma, J.; Liu, K.; Yang, X.; et al. Recent advances and challenges in photoreforming of biomass-derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride photocatalysts. ChemSusChem 2021, 14, 4903-22.
79. Zulfa, L. L.; Ediati, R.; Hidayat, A. R. P.; et al. Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe2O3/ZnO for superior photocatalytic degradation of methylene blue. RSC. Adv. 2023, 13, 3818-34.
80. Gu, Z. G.; Li, D. J.; Zheng, C.; Kang, Y.; Wöll, C.; Zhang, J. MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications. Angew. Chem. Int. Ed. 2017, 56, 6853-8.
81. Ma, X.; Liu, H.; Yang, W.; Mao, G.; Zheng, L.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220-9.
82. Zhuang, X.; Zhang, S.; Tang, Y.; Yu, F.; Li, Z.; Pang, H. Recent progress of MOF/MXene-based composites: synthesis, functionality and application. Coord. Chem. Rev. 2023, 490, 215208.
83. Liu, C.; Wang, J.; Wan, J.; Yu, C. MOF-on-MOF hybrids: synthesis and applications. Coord. Chem. Rev. 2021, 432, 213743.
84. Guo, J.; Liang, Y.; Liu, L.; et al. Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution. Appl. Surf. Sci. 2020, 522, 146356.
85. Ma, Y.; Fang, H.; Chen, R.; et al. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution. Rare. Met. 2023, 42, 3993-4004.
86. Kang, D. Y.; Lee, J. S. Challenges in developing MOF-based membranes for gas separation. Langmuir 2023, 39, 2871-80.
87. Roohollahi, H.; Zeinalzadeh, H.; Kazemian, H. Recent advances in adsorption and separation of methane and carbon dioxide greenhouse gases using metal-organic framework-based composites. Ind. Eng. Chem. Res. 2022, 61, 10555-86.
88. Ali, M.; Pervaiz, E.; Noor, T.; Rabi, O.; Zahra, R.; Yang, M. Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: a review. Int. J. Energy. Res. 2021, 45, 1190-226.
89. Li, D.; Kassymova, M.; Cai, X.; Zang, S.; Jiang, H. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262.
90. Yue, C.; Chen, L.; Zhang, H.; et al. Metal-organic framework-based materials: emerging high-efficiency catalysts for the heterogeneous photocatalytic degradation of pollutants in water. Environ. Sci. Water. Res. Technol. 2023, 9, 669-95.
91. Yang, S. J.; Im, J. H.; Kim, T.; Lee, K.; Park, C. R. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. J. Hazard. Mater. 2011, 186, 376-82.
92. Zhang, C. F.; Qiu, L. G.; Ke, F.; et al. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J. Mater. Chem. A. 2013, 1, 14329-34.
93. Li, Z.; Zhang, M.; Liu, B.; Guo, C.; Zhou, M. Rapid fabrication of metal-organic framework thin films using in situ microwave irradiation and its photocatalytic property. Inorg. Chem. Commun. 2013, 36, 241-4.
94. Saha, S.; Das, G.; Thote, J.; Banerjee, R. Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. J. Am. Chem. Soc. 2014, 136, 14845-51.
95. Fu, Y.; Sun, D.; Chen, Y.; et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364-7.
96. Fang, X.; Shang, Q.; Wang, Y.; et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
97. Nasalevich, M. A.; Hendon, C. H.; Santaclara, J. G.; et al. Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 2016, 6, 23676.
98. Yang, W.; Wang, H. J.; Liu, R. R.; et al. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 409-14.
99. Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A. 2013, 1, 11473-82.
100. Zhang, C.; Xie, C.; Gao, Y.; et al. Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2022, 61, e202204108.
101. Wang, W.; Zhang, L.; Wang, W.; Huang, J.; Wu, Q.; Wu, J. J. Photocatalytic degradation of 1,4-dioxane by heterostructured Bi2O3/Cu-MOF composites. Catalysts 2023, 13, 1211.
102. Deng, X.; Yang, L.; Huang, H.; et al. Shape-defined hollow structural Co-MOF-74 and Metal nanoparticles@Co-MOF-74 composite through a transformation strategy for enhanced photocatalysis performance. Small 2019, 15, e1902287.
103. Meng, R.; Lu, Y.; Zou, L.; et al. Growth of TiO2/Ti-MOF nanorod array with enhanced photoabsorption and photocatalytic properties on carbon cloth for efficient auto-cleaning solar desalination. Desalination 2024, 578, 117455.
104. Wang, Z.; He, M.; Jiang, H.; He, H.; Qi, J.; Ma, J. Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water. Chem. Eng. J. 2022, 435, 133870.
105. Gao, Y.; Yi, X.; Wang, C.; Wang, F.; Wang, P. Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst. Mater. Res. Bull. 2023, 158, 112072.
106. Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated bilayer MOF Enables high-selectivity photocatalytic reduction of CO2 to CO. Adv. Mater. 2023, 35, e2209814.
107. Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method. Chin. J. Catal. 2023, 51, 180-92.
108. Chen, L.; Wang, X.; Rao, Z.; et al. One-pot Synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS. Appl. Catal. B. Environ. 2022, 303, 120885.
109. Yuan, L.; Zhang, C.; Zou, Y.; et al. A S-scheme MOF-on-MOF heterostructure. Adv. Funct. Mater. 2023, 33, 2214627.
110. Li, F.; Wang, D.; Xing, Q.; et al. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B. Environ. 2019, 243, 621-8.
111. Qin, J.; Dou, Y.; Zhou, J.; et al. Photocatalytic valorization of plastic waste over zinc oxide encapsulated in a metal-organic framework. Adv. Funct. Mater. 2023, 33, 2214839.
112. Yu, Z.; Yang, Y.; Zhuang, H.; et al. In-situ growth of MIL-53 (Fe) on charcoal sponge as a highly efficient and recyclable photocatalyst for removal of Cr(VI). Rare. Met. 2024, 43, 4344-55.
113. Hussain, M. Z.; Yang, Z.; Huang, Z.; Jia, Q.; Zhu, Y.; Xia, Y. Recent advances in metal-organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Adv. Sci. 2021, 8, e2100625.
114. Ren, X.; Wei, S.; Wang, Q.; et al. Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. Appl. Catal. B. Environ. 2021, 286, 119924.
115. Liang, Q.; Gao, W.; Liu, C.; Xu, S.; Li, Z. A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with
116. Wen, J.; Guo, Y.; Li, X.; et al. Photocatalytic Ag-MOF confers efficient antimicrobial activity to modified polyvinyl alcohol films. Food. Biosci. 2024, 61, 104959.
117. Kondo, Y.; Hino, K.; Kuwahara, Y.; Mori, K.; Yamashita, H. Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal-organic framework assembled with porphyrin- and pyrene-based linkers. J. Mater. Chem. A. 2023, 11, 9530-7.
118. Tran, V. A.; Sang, T. T.; Thu, N. A.; et al. Effect of pore structure in bismuth metal-organic framework nanorod derivatives on adsorption and organic pollutant degradation. RSC. Adv. 2024, 14, 31171-82.
119. Tan, Y.; He, Y.; Yuan, D.; Zhang, J. Use of aligned triphenylamine-based radicals in a porous framework for promoting photocatalysis. Appl. Catal. B. Environ. 2018, 221, 664-9.
120. Yuan, J.; Wang, B.; Zong, Y.; Zhang, F. Ce-MOF modified Ceria-based photocatalyst for enhancing the photocatalytic performance. Inorg. Chem. Commun. 2023, 153, 110799.
121. Song, S.; Song, Z.; Han, H.; et al. Enhanced photocatalytic CO2 reduction activity on the novel Z-scheme Co-MOF/Bi2MoO6 to form CO and CH4. Appl. Cata. A. Gen. 2024, 683, 119834.
122. Chen, B.; Liu, L.; Song, Y.; et al. Functional upcycling of waste polyester into Cr-MOF towards synergistic interfacial solar evaporation and organic pollutant degradation. Mater. Today. Sustain. 2023, 24, 100561.
123. Akbarzadeh, E.; Soheili, H. Z.; Hosseinifard, M.; Gholami, M. R. Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants. Mater. Res. Bull. 2020, 121, 110621.
124. Sun, X.; Yu, Q.; Zhang, F.; Wei, J.; Yang, P. A dye-like ligand-based metal-organic framework for efficient photocatalytic hydrogen production from aqueous solution. Catal. Sci. Technol. 2016, 6, 3840-4.
125. Tong, H.; Ji, Y.; He, T.; et al. Preparation and photocatalytic performance of UIO-66/La-MOF composite. Water. Sci. Technol. 2022, 86, 95-109.
126. Salehifar, N.; Zarghami, Z.; Ramezani, M. A facile, novel and low-temperature synthesis of MgO nanorods via thermal decomposition using new starting reagent and its photocatalytic activity evaluation. Mater. Lett. 2016, 167, 226-9.
127. Ebrahimi-Koodehi, S.; Ghodsi, F. E.; Mazloom, J. Ni/Mn metal-organic framework decorated bacterial cellulose (Ni/Mn-MOF@BC) and nickel foam (Ni/Mn-MOF@NF) as a visible-light photocatalyst and supercapacitive electrode. Sci. Rep. 2023, 13, 19260.
128. Bai, Y.; Zhang, S.; Feng, S.; Zhu, M.; Ma, S. The first ternary Nd-MOF/GO/Fe3O4 nanocomposite exhibiting an excellent photocatalytic performance for dye degradation. Dalton. Trans. 2020, 49, 10745-54.
129. Javed, K.; Abbas, N.; Bilal, M.; et al. Fabrication of a ZnFe2O4@Co/Ni-MOF nanocomposite and photocatalytic degradation study of azo dyes. RSC. Adv. 2024, 14, 30957-70.
130. Kim, J. H.; Wu, S.; Zdrazil, L.; Denisov, N.; Schmuki, P. 2D metal-organic framework nanosheets based on Pd-TCPP as photocatalysts for highly improved hydrogen evolution. Angew. Chem. Int. Ed. 2024, 63, e202319255.
131. Pan, W.; Li, Z.; Qiu, S.; et al. Octahedral Pt-MOF with Au deposition for plasmonic effect and Schottky junction enhanced hydrogenothermal therapy of rheumatoid arthritis. Mater. Today. Bio. 2022, 13, 100214.
132. Wang, X.; Li, H.; Song, Y.; Shi, Y.; Fan, J.; Cheng, L. Sn-MOF and Sn-MOF@Fe3O4 composites for highly efficient photocatalytic degradation of rhodamine B. Polyhedron 2024, 255, 117130.
133. Qiao, Y.; Chai, Y.; Jin, Q.; et al. A newly synthesized water-stabilized Zn-MOF for selective luminescent sensing of L-tryptophan and photocatalytic degradation of tetracycline. J. Solid. State. Chem. 2024, 338, 124873.
134. Hu, H.; Zhang, K.; Yan, G.; et al. Precisely decorating CdS on Zr-MOFs through pore functionalization strategy: a highly efficient photocatalyst for H2 production. Chin. J. Catal. 2022, 43, 2332-41.
135. Zhang, X.; Ma, X.; Ye, Y.; et al. Enhanced photocatalytic hydrogen evolution with a Mixed-Valence iron Metal-Organic framework. Chem. Eng. J. 2023, 456, 140939.
136. Hu, J.; Lao, H.; Xu, X.; Wang, W.; Wang, L.; Liu, Q. In situ meso-tetra (4-carboxyphenyl) porphyrin ligand substitution in Hf-MOF for enhanced catalytic activity and stability in photoredox reactions. Rare. Met. 2024, 43, 2682-94.
137. Mao, S.; Shi, J.; Sun, G.; et al. Cu (II) decorated thiol-functionalized MOF as an efficient transfer medium of charge carriers promoting photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 404, 126533.
138. Zhang, H.; Luo, Y. H.; Chen, F. Y.; Geng, W. Y.; Lu, X. X.; Zhang, D. E. Enhancing the spatial separation of photogenerated charges on Fe-based MOFs via structural regulation for highly-efficient photocatalytic Cr(VI) reduction. J. Hazard. Mater. 2023, 441, 129875.
139. Grape, E. S.; Flores, J. G.; Hidalgo, T.; et al. A robust and biocompatible Bismuth Ellagate MOF synthesized under green ambient conditions. J. Am. Chem. Soc. 2020, 142, 16795-804.
140. Song, K.; Liang, S.; Zhong, X.; et al. Tailoring the crystal forms of the Ni-MOF catalysts for enhanced photocatalytic CO2-to-CO performance. Appl. Catal. B. Environ. 2022, 309, 121232.
141. Zhang, M.; Qin, Y.; Zhang, F.; et al. Site-selective etching and conversion of bismuth-based Metal-Organic frameworks by oxyanions enables efficient and selective adsorption via robust coordination bonding. Chem. Eng. J. 2024, 488, 150867.
142. Hicks, K. E.; Wolek, A. T. Y.; Farha, O. K.; Notestein, J. M. The dependence of olefin hydrogenation and isomerization rates on zirconium metal-organic framework structure. ACS. Catal. 2022, 12, 13671-80.
143. Ding, Z.; Li, X.; Kang, C.; et al. Single Ru atoms confined into MOF/C3N4 for dual improved photocatalytic carbon dioxide reduction and nitrogen fixation. Chem. Eng. J. 2023, 473, 145256.
144. Li, L.; Lv, X.; Jin, L.; et al. Facile synthesis of Sn-doped MOF-5 catalysts for efficient photocatalytic nitrogen fixation. Appl. Catal. B. Environ. 2024, 344, 123586.
145. Guo, X.; Yang, Z.; Zhao, J.; Liu, R. One-pot modulated construction of Ni-MOF/NiFe2O4 heterostructured catalyst for efficient oxygen evolution. Rare. Met. 2024, 43, 6751-7.
146. Zhao, Z.; Bian, J.; Zhao, L.; et al. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation. Chin. J. Catal. 2022, 43, 1331-40.
147. Zhao, Y.; Shen, J.; Yuan, J.; et al. Modulating electronic structures of MOF through orbital rehybridization by Cu doping promotes photocatalytic reduction of nitrate to produce ammonia. Nano. Energy. 2024, 124, 109499.
148. Xu, J.; Lu, L.; Zhu, C.; et al. Insights into conduction band flexibility induced by spin polarization in titanium-based metal-organic frameworks for photocatalytic water splitting and pollutants degradation. J. Colloid. Interface. Sci. 2023, 630, 430-42.
149. Shen, Y.; Yao, Y.; Lu, L.; et al. Insights into dual effect of missing linker-cluster domain defects for photocatalytic 2e- ORR: radical reaction and electron behavior. Chemosphere 2023, 324, 138220.
150. Zhao, Y.; Cui, H.; Hu, Y.; et al. A two dimensional hierarchically porous MOF-Cu with large lateral size via amino-groups regulated hydrolysis strategy and its superior photocatalytic reduction of CO2. Appl. Catal. B. Environ. Energy. 2025, 361, 124567.
151. Zhang, C.; Qin, S.; Gao, H.; Jin, P. High hydrogen evolution activities of dual-metal atoms incorporated N-doped graphenes achieved by coordination regulation. J. Mater. Inf. 2024, 4, 1.
152. Xu, Y.; Ren, K.; Xu, R. In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts. Chin. J. Catal. 2021, 42, 1370-8.
153. Li, H.; Deng, C.; Li, F.; Ma, M.; Tang, Q. Investigation of dual atom doped single-layer MoS2 for electrochemical reduction of carbon dioxide by first-principle calculations and machine-learning. J. Mater. Inf. 2023, 3, 25.
154. Han, C.; Zhang, X.; Huang, S.; et al. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction. Adv. Sci. 2023, 10, e2300797.
155. Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. A hierarchical Bi-MOF-derived BiOBr/Mn0.2Cd0.8S S-scheme for visible-light-driven photocatalytic CO2 reduction. J. Mater. Sci. Technol. 2023, 156, 64-71.
156. Le, S.; Jin, Q.; Han, J.; et al. Rare earth element-modified MOF materials: synthesis and photocatalytic applications in environmental remediation. Rare. Met. 2024, 43, 1390-406.
157. Li, Y.; Guo, Y.; Luan, D.; Gu, X.; Lou, X. W. D. An unlocked two-dimensional conductive Zn-MOF on polymeric carbon nitride for photocatalytic H2O2 production. Angew. Chem. Int. 2023, 62, e202310847.
158. Isaka, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. 2019, 58, 5402-6.
159. Haris, M.; Khan, M. W.; Zavabeti, A.; Mahmood, N.; Eshtiaghi, N. Self-assembly of C@FeO nanopillars on 2D-MOF for simultaneous removal of microplastic and dissolved contaminants from water. Chem. Eng. J. 2023, 455, 140390.
160. Zhang, Y.; Ma, F.; Ling, M.; Zheng, H.; Wu, Y.; Li, L. In-situ constructed indirect Z-type heterojunction by plasma Bi and BiO2-X-
161. Dong, Q.; Li, X.; Sun, J.; et al. Regulating concentration of surface oxygen vacancies in Bi2MoO6/Bi-MOF for boosting photocatalytic ammonia synthesis. J. Catal. 2024, 433, 115489.
162. Zhang, L.; Zhou, X.; Liu, S.; et al. Two birds, one stone: rational design of Bi-MOF/g-C3N4 photocatalyst for effective nitrogen fixation and pollutants degradation. J. Clean. Prod. 2023, 425, 138912.
163. Lu, W.; Zheng, D.; Ye, D.; et al. N-heterocyclic carbene coordinated single atom catalysts on C2N for enhanced nitrogen reduction. J. Mater. Inf. 2024, 4, 31.
164. Xiao, S.; Pan, D.; Liang, R.; et al. Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with high performance in visible-light photocatalytic NO oxidization. Appl. Catal. B. Environ. 2018, 236, 304-13.