REFERENCES
1. Yang, M.; Guo, M.; Xu, E.; et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 2024, 19, 588-603.
2. Yang, M.; Ren, W.; Guo, M.; Shen, Y. High-energy-density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review. Small 2022, 18, e2205247.
3. Luo, H.; Zhou, X.; Ellingford, C.; et al. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424-65.
4. Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260-317.
5. Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 2015, 45, 433-58.
6. Dang, Z. M.; Yuan, J. K.; Yao, S. H.; Liao, R. J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334-65.
7. Cheng, W.; Xiaojie, L. High energy storage properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by incorporating
8. Wang, C.; Hou, L.; Huan, Y. Study on the structure and properties of (1-x)KNNS-xBFANZ lead-free piezoelectric ceramics. Adv. Ceram. 2023, 44, 490-6.
9. Yang, Y.; Dou, Z.; Zou, K.; et al. Regulating local electric field to optimize the energy storage performance of antiferroelectric ceramics via a composite strategy. J. Adv. Ceram. 2023, 12, 598-611.
10. Luo, X.; Yan, Z.; Luo, H.; et al. Greatly improved piezoelectricity and thermal stability of (Na, Sm) Co-doped CaBi2Nb2O9 ceramics. Adv. Powder. Mater. 2023, 2, 100116.
11. Duan, J.; Wei, K.; Du, Q.; Ma, L.; Qi, H.; Li, H. High-entropy tungsten bronze ceramics for large capacitive energy storage with near-zero losses. Adv. Funct. Mater. 2024, 34, 2409446.
12. Liu, X.; Cheng, M.; Zhang, Y.; Xing, Y.; Dang, Z.; Zha, J. High-temperature polymer dielectric films with excellent energy storage performance utilizing inorganic outerlayers. Compos. Sci. Technol. 2024, 245, 110305.
13. Fan, X.; Ding, X.; Wang, P.; et al. Ultra-low loading fillers induced excellent capacitive performance in polymer-based multilayer nanocomposites under harsh environments. Small 2024, 20, e2405786.
14. Yuan, Q.; Wang, Y.; Zhang, Z.; et al. Polymer-based nanocomposites with one-dimensional nanofillers for dielectric energy storage at high temperatures. ACS. Appl. Polym. Mater. 2024, 6, 10136-48.
15. Chen, J.; Ren, F.; Yin, N.; Mao, J. Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings. Chem. Eng. J. 2024, 479, 147581.
16. Wang, P.; Yao, L.; Pan, Z.; et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 2021, 33, e2103338.
17. Niu, Y.; Dong, J.; He, Y.; et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano. Energy. 2022, 97, 107215.
18. Zeng, J.; Yan, J.; Li, B.; Zhang, X. Improved breakdown strength and energy storage performances of PEI-based nanocomposite with core-shell structured PI@BaTiO3 nanofillers. Ceram. Int. 2022, 48, 20526-33.
19. Li, Q.; Chen, L.; Gadinski, M. R.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576-9.
20. Wu, X.; Song, G.; Zhang, W.; et al. Atomic layer deposition fabricated core-shell nanostructures for enhanced polyetherimide composite dielectrics. J. Mater. Chem. A. 2022, 10, 13097-105.
21. Li, X.; Luo, H.; Yang, C.; et al. Enhancing high-temperature energy storage performance of PEI-based dielectrics by incorporating ZIF-67 with a narrow bandgap. ACS. Appl. Mater. Interfaces. 2023, 15, 41828-38.
22. Xu, W.; Yang, G.; Jin, L.; et al. High-k polymer nanocomposites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS. Appl. Mater. Interfaces. 2018, 10, 11233-41.
23. Zuo, P.; Jiang, J.; Wang, R.; et al. Poly(ether imide) poly(ether imide) nanocomposites with BaTiO3@TiO2@SiO2 or BaTiO3@SiO2@TiO2 fillers improve energy storage capacity and dielectric thermal stability. ACS. Appl. Nano. Mater. 2023, 6, 18381-93.
24. Wu, X.; Tan, D. Q. Enhanced energy density of polyetherimide using low content barium titanate nanofillers. J. Phys. Conf. Ser. 2023, 2500, 012008.
25. Fan, Z.; Gao, S.; Chang, Y.; et al. Ultra-superior high-temperature energy storage properties in polymer nanocomposites via rational design of core-shell structured inorganic antiferroelectric fillers. J. Mater. Chem. A. 2023, 11, 7227-38.
26. Guo, R.; Luo, H.; Liu, W.; et al. High energy density in PVDF nanocomposites using an optimized nanowire array. Phys. Chem. Chem. Phys. 2018, 20, 18031-7.
27. Dang, Z.; Lin, Y.; Yuan, Q.; et al. Ultrahigh dielectric energy density and efficiency in PEI-based gradient layered polymer nanocomposite. Adv. Funct. Mater. 2024, 34, 2406148.
28. Su, Y.; Huan, Y.; Peng, B.; Wang, X.; Wu, L.; Wei, T. Energy storage properties of flexible dielectric composites containing
29. Gao, F.; Zhang, K.; Guo, Y.; Xu, J.; Szafran, M. (Ba, Sr)TiO3/polymer dielectric composites-progress and perspective. Prog. Mater. Sci. 2021, 121, 100813.
30. Feng, Y.; Xue, J.; Zhang, T.; et al. Double-gradients design of polymer nanocomposites with high energy density. Energy. Storage. Mater. 2022, 44, 73-81.
31. Liu, Y.; Luo, H.; Xiong, H.; et al. Enhanced high-temperature capacitive energy storage by 0.55Bi0.5Na0.5TiO3-0.45(Bi0.2Sr0.7)TiO3 nanofibers in polyetherimide nanocomposites. ACS. Appl. Polym. Mater. 2023, 5, 7277-87.
32. Wang, D.; Zhou, T.; Zha, J.; Zhao, J.; Shi, C.; Dang, Z. Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A. 2013, 1, 6162.
33. Jun, S.; Jung, D.; Kim, J.; Yu, S. Dielectric characteristics of graphene-encapsulated barium titanate polymer composites. Mater. Chem. Phys. 2020, 255, 123533.
34. Wang, P.; Zhou, D.; Guo, H.; et al. Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler. J. Mater. Chem. A. 2020, 8, 11124-32.
35. Dong, X.; Wang, Y.; Wang, Y.; Yu, J.; Hu, Z. Polyetherimide-based composites containing novel BaTiO3@MgO nanofibers for high-temperature film capacitors. Colloid. Surface. A. Physicochem. Eng. Asp. 2024, 697, 134425.
36. Sun, W.; Lu, X.; Jiang, J.; et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. App. Phys. 2017, 121, 244101.
37. Yuan, C.; Zhou, Y.; Zhu, Y.; et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 3919.
38. Drakopoulos, S. X.; Wu, J.; Maguire, S. M.; et al. Polymer nanocomposites: interfacial properties and capacitive energy storage. Prog. Polym. Sci. 2024, 156, 101870.
39. Lin, J.; Jiang, J.; Zhou, Y.; et al. Constructing deep traps to achieve excellent dielectric properties in crystal-based HfO2/PEI nanocomposite films with ultralow filler loadings. ACS. Appl. Mater. Interfaces. 2024, 16, 11880-9.
40. Kanamori, T.; Han, Y.; Nagao, D.; Kamezawa, N.; Ishii, H.; Konno, M. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO3 nanoparticles. Mater. Sci. Eng. B. 2016, 211, 173-7.
41. Ren, X.; Jin, L.; Peng, Z.; et al. Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem. Eng. J. 2020, 390, 124566.
42. Tilley, R. J. D. Colour and the optical properties of materials: an exploration of the relationship between light, the optical properties of materials and color. John Wiley & Sons, Ltd, 2011.
43. Wübbeler, G.; Campos, A. J.; Elster, C. Evaluation of uncertainties for CIELAB color coordinates. Color. Res. Appl. 2017, 42, 564-70.
44. Su, Y.; Huan, Y.; Liu, W.; et al. Color-coding real-time detection for the health of lithium-ion batteries. Acta. Mater. 2025, 283, 120562.
45. Ren, W.; Pan, J.; Dan, Z.; et al. High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles. Chem. Eng. J. 2021, 420, 127614.
46. Zhang, C.; Tong, X.; Zhang, T.; et al. Constructing a dual gradient structure of energy level gradient and concentration gradient to significantly improve the high-temperature energy storage performance of all organic composite dielectrics. Chem. Eng. J. 2024, 491, 151634.
47. Hu, D.; Luo, H.; Liu, Y.; et al. Enhanced high-temperature performance of PEI dielectrics via deep trap energy levels and physically crosslinked effects. Chem. Eng. J. 2024, 498, 155398.
48. Chen, X.; Wei, Y.; Wang, F.; et al. Enhanced high-temperature capacitive performance of PEI dielectrics by an adjustable Al2O3 interlayer. ACS. Appl. Polym. Mater. 2024, 6, 12616-22.
49. Stark, K. H.; Garton, C. G. Electric strength of irradiated polythene. Nature 1955, 176, 1225-6.
50. Nie, L.; Lin, J.; Zhang, P.; Zuo, P.; Liu, X.; Zhuang, Q. Significantly enhanced high-temperature energy storage capacity for polyetherimide-based nanocomposites via energy level modulation and electrostatic crosslinking. J. Power. Sources. 2025, 626, 235698.
51. Sun, S.; Fan, K.; Yang, J.; et al. Surface modification engineering on polymer materials toward multilevel insulation properties and subsequent dielectric energy storage. Mater. Today. 2024, 80, 758-823.
52. Bhunia, R.; Ghosh, D.; Ghosh, B.; Hussain, S.; Bhar, R.; Pal, A. K. Some aspects of microstructural and dielectric properties of nanocrystalline CdS/poly(vinylidene fluoride) composite thin films. Polym. Int. 2015, 64, 924-34.
53. Feng, Y.; Zhou, Y.; Zhang, T.; et al. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy. Storage. Mater. 2020, 25, 180-92.
54. Zhang, X.; Shen, Y.; Zhang, Q.; et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 2015, 27, 819-24.
55. Hu, H.; Zhang, F.; Luo, S.; Chang, W.; Yue, J.; Wang, C. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano. Energy. 2020, 74, 104844.
56. Samantaray, S.; Mallick, P.; Hung, I.; Moniruzzaman, M.; Satpathy, S. K.; Mohanty, D. Ceramic-ceramic nanocomposite materials for energy storage applications: a review. J. Energy. Storage. 2024, 99, 113330.
57. Ai, D.; Li, H.; Zhou, Y.; et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy. Mater. 2020, 10, 1903881.
58. Zhou, Y.; Yuan, C.; Wang, S.; et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy. Storage. Mater. 2020, 28, 255-63.
59. Li, H.; Ai, D.; Ren, L.; et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, e1900875.
60. Lin, J.; Wu, X.; Xia, Y.; et al. The poly(arylene ether urea) double interface layer formed in PEEU@HfO2/PEI nanocomposites enables enhanced dielectric and energy storage performance. Surf. Interfaces. 2024, 49, 104462.