REFERENCES
1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-1.
2. Zhang, P.; Wu, J.; Zhang, T.; et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737.
3. Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 2014, 8, 133-8.
4. Das, S.; Yang, B.; Gu, G.; et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS. Photonics. 2015, 2, 680-6.
5. Ma, C.; Zhang, C.; Chen, S.; et al. Interfacial defect passivation by multiple-effect molecule for efficient and stable perovskite solar cells. Solar. Energy. Mater. Solar. Cells. 2023, 262, 112499.
6. Zheng, X.; Li, Z.; Zhang, Y.; et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy. 2023, 8, 462-72.
7. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867-918.
8. Qu, M.; Tian, Y.; Cheng, Y.; Zhong, J.; Zhang, C. Whole-device mass-producible perovskite photodetector based on laser-induced graphene electrodes. Adv. Opt. Mater. 2022, 10, 2201741.
9. Zhan, Y.; Cheng, Q.; Peng, J.; et al. Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano. Energy. 2022, 98, 107254.
10. Zhu, B. S.; Ma, Z. Y.; Song, Y. H.; et al. Ultrabright and efficient green perovskite light-emitting diodes enabled by well-crystallized dense CsPbBr3 nanocubes. Nano. Lett. 2024, 24, 14750-7.
11. Liu, L.; Xu, M.; Xu, X.; Tao, X.; Gao, Z. High sensitivity X-ray detectors with low degradation based on deuterated halide perovskite single crystals. Adv. Mater. 2024, 36, e2406443.
12. Wei, H.; Gong, J.; Liu, J.; et al. Thermally and mechanically stable perovskite artificial synapse as tuned by phase engineering for efferent neuromuscular control. Nano. Lett. 2024, 24, 9311-21.
13. Wang, J.; Zhang, C.; Liu, H.; et al. Tunable spin characteristic properties in spin valve devices based on hybrid organic-inorganic perovskites. Adv. Mater. 2019, 31, e1904059.
14. Ashley, M. J.; O'Brien, M. N.; Hedderick, K. R.; Mason, J. A.; Ross, M. B.; Mirkin, C. A. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 2016, 138, 10096-9.
15. Tang, S.; Deng, Y.; Zheng, X.; et al. Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy. Mater. 2017, 7, 1700302.
16. Zhang, Y.; Liu, Y.; Liu, S. Composition engineering of perovskite single crystals for high-performance optoelectronics. Adv. Funct. Mater. 2023, 33, 2210335.
17. Yu, J. C.; Li, B.; Dunn, C. J.; et al. High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 2022, 9, e2201487.
18. Li, Q.; Wang, Y.; Pan, W.; et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem. Int. Ed. 2017, 56, 15969-73.
19. Ren, X.; Yan, X.; Ahmad, A. S.; et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C. 2019, 123, 15204-8.
20. Francisco-López, A.; Charles, B.; Weber, O. J.; et al. Pressure-induced locking of methylammonium cations versus amorphization in hybrid lead iodide perovskites. J. Phys. Chem. C. 2018, 122, 22073-82.
21. Wang, Y.; Lü, X.; Yang, W.; et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 2015, 137, 11144-9.
22. Yuan, Y.; Liu, X. F.; Ma, X.; et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure. Adv. Sci. 2019, 6, 1900240.
23. Wang, Y.; Long, R. Unravelling the effects of pressure-induced suppressed electron-hole recombination in CsPbBr3 perovskite: time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 4354-61.
24. Sarkar, G.; Ghosh, D. Effects of lattice compression on halogen ion diffusion dynamics in mixed halide perovskites. ACS. Appl. Energy. Mater. 2024, 7, 6376-83.
25. Vishnoi, P.; Rao, C. N. R. Temperature and pressure induced structural transitions of lead iodide perovskites. J. Mater. Chem. A. 2023, 12, 19-37.
26. Capitani, F.; Marini, C.; Caramazza, S.; et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite. J. Appl. Phys. 2016, 119, 185901.
27. Morozova, N. V.; Zhevstovskikh, I. V.; Korobeinikov, I. V.; Sarychev, M. N.; Semenova, O. I.; Ovsyannikov, S. V. Manipulating the phase stability of a halide perovskite, CH3NH3PbI3 by high-pressure cycling. J. Alloys. Compd. 2024, 988, 174305.
28. Wang, H.; Wang, Q.; Yang, K.; et al. The self-healing and robust photostability of (PEA)2PbI4 perovskite via pressure-induced amorphization and recrystallization. Opt. Mater. 2024, 152, 115449.
29. Nie, W.; Tsai, H.; Blancon, J. C.; et al. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv. Mater. 2018, 30, 1703879.
30. Shao, S.; Dong, J.; Duim, H.; et al. Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano. Energy. 2019, 60, 810-6.
31. Ahmadian-yazdi, M.; Lin, S.; Cai, Z. Unveiling heavy heterovalent doping-modulated microstructure and thermoelectric performance in bulk hybrid perovskite single crystals. Chem. Eng. J. 2024, 487, 150477.
32. Zhou, B.; Ding, D.; Wang, Y.; et al. A scalable H2O-DMF-DMSO solvent synthesis of highly luminescent inorganic perovskite-related cesium lead bromides. Adv. Opt. Mater. 2021, 9, 2001435.
33. Manjunatha, S. N.; Chu, Y.; Jeng, M.; Chang, L. The Characteristics of perovskite solar cells fabricated using DMF and DMSO/GBL solvents. J. Electron. Mater. 2020, 49, 6823-8.
34. Zhang, F.; Lian, J.; Song, J.; Hao, Y.; Zeng, P.; Niu, H. Sec-butyl alcohol assisted pinhole-free perovskite film growth for high-performance solar cells. J. Mater. Chem. A. 2016, 4, 3438-45.
35. Xiao, M.; Huang, F.; Huang, W.; et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 2014, 53, 9898-903.
36. Chen, J.; Ren, J.; Li, Z.; Wang, H.; Hao, Y. Mixed antisolvents assisted treatment of perovskite for photovoltaic device efficiency enhancement. Org. Electron. 2018, 56, 59-67.
37. Li, X.; Dar, M. I.; Yi, C.; et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703-11.
38. Wu, Z.; Raga, S. R.; Juarez-Perez, E. J.; et al. Improved efficiency and stability of perovskite solar cells induced by C=O functionalized hydrophobic ammonium-based additives. Adv. Mater. 2018, 30, 1703670.
39. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696-9.
40. Noel, N. K.; Abate, A.; Stranks, S. D.; et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS. Nano. 2014, 8, 9815-21.
41. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503-9.
42. Xie, F. X.; Zhang, D.; Su, H.; et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS. Nano. 2015, 9, 639-46.
43. Liu, J.; Gao, C.; He, X.; et al. Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS. Appl. Mater. Interfaces. 2015, 7, 24008-15.
44. Gao, L.; Li, C.; Li, C.; Yang, G. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. J. Mater. Chem. A. 2017, 5, 1548-57.
45. Zhong, J.; Wu, W.; Ding, L.; Kuang, D. Blade-coating perovskite films with diverse compositions for efficient photovoltaics. Energy. Environ. Mater. 2021, 4, 277-83.
46. Li, Z.; Wang, X.; Wang, Z.; et al. Ammonia for post-healing of formamidinium-based Perovskite films. Nat. Commun. 2022, 13, 4417.
47. Su, J.; Cai, H.; Ye, X.; et al. Efficient Perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air. ACS. Appl. Mater. Interfaces. 2019, 11, 10689-96.
48. Zhang, Z.; Li, Z.; Deng, L.; et al. Hot-air treatment-regulated diffusion of LiTFSI to accelerate the aging-induced efficiency rising of perovskite solar cells. ACS. Appl. Mater. Interfaces. 2022, 14, 4378-88.
49. Meng, K.; Chen, B.; Xiao, M.; et al. Humidity-insensitive, large-area-applicable, hot-air-assisted ambient fabrication of 2D perovskite solar cells. Adv. Mater. 2023, 35, e2209712.
50. Xing, R.; Shi, P.; Wang, D.; et al. Flexible self-powered weak light detectors based on ZnO/CsPbBr3/γ-CuI heterojunctions. ACS. Appl. Mater. Interfaces. 2022, 14, 40093-101.
51. Zhu, F.; Lian, G.; Cui, D.; et al. A general strategy for ordered carrier transport of quasi-2D and 3D Perovskite films for giant self-powered photoresponse and ultrahigh stability. Nanomicro. Lett. 2023, 15, 115.
52. Witt, C.; Leupold, N.; Ramming, P.; Schötz, K.; Moos, R.; Panzer, F. How the microstructure of MAPbI3 powder impacts pressure-induced compaction and optoelectronic thick-film properties. J. Phys. Chem. C. 2022, 126, 15424-35.
53. Liu, L.; Li, W.; Feng, X.; et al. Energy transfer assisted fast X-ray detection in direct/indirect hybrid perovskite wafer. Adv. Sci. 2022, 9, e2103735.
54. Shi, Y.; Zhou, Y.; Ma, Z.; Xiao, G.; Wang, K.; Zou, B. Structural regulation and optical behavior of three-dimensional metal halide perovskites under pressure. J. Mater. Chem. C. 2020, 8, 12755-67.
55. Liu, G.; Kong, L.; Yang, W.; Mao, H. Pressure engineering of photovoltaic perovskites. Mater. Today. 2019, 27, 91-106.
56. Wang, N.; Zhang, S.; Wang, S.; et al. Pressure engineering on perovskite structures, properties, and devices. Adv. Funct. Mater. 2024, 34, 2315918.
57. Li, N.; Li, Y.; Xie, S.; et al. High-performance and self-powered X-ray detectors made of smooth perovskite microcrystalline films with 100 μm grains. Angew. Chem. Int. Ed. 2023, 62, e202302435.
58. Liu, Y.; Wu, Z.; Dou, Y.; et al. Formamidinium-based perovskite solar cells with enhanced moisture stability and performance via confined pressure annealing. J. Phys. Chem. C. 2020, 124, 12249-58.
59. Shrestha, S.; Fischer, R.; Matt, G. J.; et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photon. 2017, 11, 436-40.
60. Li, W. G.; Wang, X. D.; Huang, Y. H.; Kuang, D. B. Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 2023, 35, e2210878.
61. Zhang, H. J.; Liu, Y. F.; Zheng, X.; Feng, J. Improved performance of all-inorganic perovskite light-emitting diodes via nanostructured stamp imprinting. Chemphyschem 2023, 24, e202200860.
62. Mosconi, E.; De, A. F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS. Energy. Lett. 2016, 1, 182-8.
63. Yang, R. X.; Skelton, J. M.; da, S. E. L.; Frost, J. M.; Walsh, A. Spontaneous octahedral tilting in the cubic inorganic cesium halide perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I). J. Phys. Chem. Lett. 2017, 8, 4720-6.
64. Fabini, D. H.; Seshadri, R.; Kanatzidis, M. G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS. Bull. 2020, 45, 467-77.
65. Reyes-Martinez, M. A.; Abdelhady, A. L.; Saidaminov, M. I.; et al. Time-dependent mechanical response of APbX3 (A = Cs,
66. Rakita, Y.; Cohen, S. R.; Kedem, N. K.; Hodes, G.; Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS. Commun. 2015, 5, 623-9.
67. Li, M.; Li, H.; Li, W.; et al. Oriented 2D Perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 2022, 34, e2108020.
68. Witt, C.; Schmid, A.; Leupold, N.; et al. Impact of pressure and temperature on the compaction dynamics and layer properties of powder-pressed methylammonium lead halide thick films. ACS. Appl. Electron. Mater. 2020, 2, 2619-28.
69. Matsushima, T.; Fujihara, T.; Qin, C.; et al. Morphological control of organic-inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. J. Mater. Chem. A. 2015, 3, 17780-7.
70. Mayer, A.; Haeger, T.; Runkel, M.; et al. Relevance of processing parameters for grain growth of metal halide perovskites with nanoimprint. Appl. Phys. A. 2021, 127, 4830.
71. Dunlap-shohl, W. A.; Li, T.; Mitzi, D. B. Interfacial effects during rapid lamination within MAPbI3 thin films and solar cells. ACS. Appl. Energy. Mater. 2019, 2, 5083-93.
72. Mayer, A.; Pourdavoud, N.; Doukkali, Z.; et al. Upgrading of methylammonium lead halide perovskite layers by thermal imprint. Appl. Phys. A. 2021, 127, 4366.
73. Moon, J.; Kwon, S.; Alahbakhshi, M.; et al. Surface energy-driven preferential grain growth of metal halide perovskites: effects of nanoimprint lithography beyond direct patterning. ACS. Appl. Mater. Interfaces. 2021, 13, 5368-78.
74. Palmer, J. E.; Thompson, C. V.; Smith, H. I. Grain growth and grain size distributions in thin germanium films. J. Appl. Phys. 1987, 62, 2492-7.
76. Thompson, C. V. Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 2000, 30, 159-90.
77. Mayer, A.; Haeger, T.; Runkel, M.; et al. Direct patterning of methylammonium lead bromide perovskites by thermal imprint. Appl. Phys. A. 2022, 128, 5521.
78. Fu, X.; Dong, N.; Lian, G.; et al. High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors. Nano. Lett. 2018, 18, 1213-20.
79. Thompson, C.; Carel, R. Texture development in polycrystalline thin films. Mater. Sci. Eng. B. 1995, 32, 211-9.
80. Thompson, C. Grain growth in polycrystalline thin films of semiconductors. Interface. Sci. 1998, 6, 85-93.
81. Wang, T.; Lian, G.; Huang, L.; et al. MAPbI3 quasi-single-crystal films composed of large-sized grains with deep boundary fusion for sensitive vis-NIR photodetectors. ACS. Appl. Mater. Interfaces. 2020, 12, 38314-24.
82. Zhang, L.; Zhang, T.; Gao, Y.; et al. Uniaxially oriented FAxMA1-xPbI3 films with low intragrain and structural defects for self-powered photodetectors. J. Mater. Chem. C. 2022, 10, 9546-53.
83. Zheng, L.; Nozariasbmarz, A.; Hou, Y.; et al. A universal all-solid synthesis for high throughput production of halide perovskite. Nat. Commun. 2022, 13, 7399.
84. Zhang, H.; Hou, W.; Hao, Y.; Song, J.; Zhang, F. Unified crystal phase control with MACl for inducing single-crystal-like perovskite thin films in high-pressure fusion toward high efficiency perovskite solar cell modules. Small 2024, 20, e2400173.
85. Zhang, J.; Liu, F.; Li, S.; et al. Recrystallization behaviour of cubic boron nitride under high pressure. J. Eur. Ceram. Soc. 2021, 41, 132-8.
86. Yin, T.; Fang, Y.; Chong, W. K.; et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates. Adv. Mater. 2018, 30, 1705017.
87. Lee, K. J.; Wei, R.; Wang, Y.; et al. Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nat. Photon. 2023, 17, 236-43.
88. Shao, Y.; Fang, Y.; Li, T.; et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy. Environ. Sci. 2016, 9, 1752-9.
89. Sherkar, T. S.; Momblona, C.; Gil-Escrig, L.; et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS. Energy. Lett. 2017, 2, 1214-22.
90. Luo, J.; Xia, J.; Yang, H.; et al. A pressure process for efficient and stable perovskite solar cells. Nano. Energy. 2020, 77, 105063.
91. Chun, D. H.; Kim, S.; Chai, S. U.; et al. Grain boundary healing of organic-inorganic halide perovskites for moisture stability. Nano. Lett. 2019, 19, 6498-505.
92. Lanaghan, C. L.; Okia, O.; Coons, T.; et al. Understanding process-structure relationships during lamination of halide perovskite interfaces. ACS. Appl. Mater. Interfaces. 2024, 16, 58657-67.
93. Yang, B.; Xie, Y.; Zeng, P.; Dong, Y.; Ou, Q.; Zhang, S. Tightly compacted perovskite laminates on flexible substrates via hot-pressing. Appl. Sci. 2020, 10, 1917.
94. Zhang, W.; Li, Y.; Liu, X.; Tang, D.; Li, X.; Yuan, X. Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chem. Eng. J. 2020, 379, 122298.
95. Wang, T.; Lian, G.; Huang, L.; et al. A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors. Nano. Energy. 2019, 64, 103914.
96. Huang, L.; Xing, Z.; Tang, X.; et al. Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier. J. Mater. Chem. A. 2021, 9, 16178-86.
97. Chen, H.; Ye, F.; Tang, W.; et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92-5.
98. Yu, Y.; Shang, M.; Wang, T.; et al. All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted method. J. Mater. Chem. C. 2021, 9, 15056-64.
99. Zhang, H.; Ye, S.; Hao, Y.; et al. Realization of ultra-flat perovskite films with surprisingly large-grain distribution using high-pressure cooking. Chem. Eng. J. 2022, 445, 136803.
100. Zhu, F.; Lian, G.; Yu, B.; et al. Pressure-enhanced vertical orientation and compositional control of ruddlesden-popper perovskites for efficient and stable solar cells and self-powered photodetectors. ACS. Appl. Mater. Interfaces. 2022, 14, 1526-36.
101. Li, T.; Dunlap-shohl, W. A.; Mitzi, D. B. Bifacial perovskite solar cells via a rapid lamination process. ACS. Appl. Energy. Mater. 2020, 3, 9493-7.
102. Gan, S.; Sun, H.; Li, C.; Dou, D.; Li, L. Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization. Sci. Bull. 2023, 68, 2247-67.
103. Yadavalli, S. K.; Lanaghan, C. L.; Palmer, J.; et al. Lamination of >21% efficient perovskite solar cells with independent process control of transport layers and interfaces. ACS. Appl. Mater. Interfaces. 2024, 16, 16040-9.
104. Dong, N.; Fu, X.; Lian, G.; et al. Solvent-assisted thermal-pressure strategy for constructing high-quality CH3NH3PbI3-xClx films as high-performance perovskite photodetectors. ACS. Appl. Mater. Interfaces. 2018, 10, 8393-8.
105. Zhou, H.; Song, Z.; Grice, C. R.; et al. Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 2018, 9, 4714-9.
106. Shang, M.; Lian, G.; Lv, S.; et al. “Visible” phase separation of MAPbI3/δ-FAPbI3 films for high-performance and stable photodetectors. Adv. Mater. Inter. 2021, 8, 2100266.
107. Huang, L.; Yu, B.; Zhu, F.; et al. Spin-coating thermal-pressed strategy for the preparation of inorganic perovskite quasi-single-crystal thin films with giant single-/two-photon responses. Nano. Energy. 2022, 92, 106719.
108. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019-38.
109. Yang, B.; Pan, W.; Wu, H.; et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.
110. Liu, W.; Shi, T.; Zhu, J.; et al. PbI2-DMSO assisted in situ growth of perovskite wafers for sensitive direct X-ray detection. Adv. Sci. 2022, 10, e2204512.
111. Wu, J.; Wang, L.; Feng, A.; et al. Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity. Adv. Funct. Mater. 2022, 32, 2109149.
112. Wang, W.; Meng, H.; Qi, H.; et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors. Adv. Mater. 2020, 32, e2001540.
113. Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391-402.
114. Zhmakin, A. Enhancement of light extraction from light emitting diodes. Phys. Rep. 2011, 498, 189-241.
115. Zhu, H.; Fu, Y.; Meng, F.; et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636-42.
116. Fu, Y.; Zhu, H.; Schrader, A. W.; et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano. Lett. 2016, 16, 1000-8.
117. Zhang, Q.; Ha, S. T.; Liu, X.; Sum, T. C.; Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano. Lett. 2014, 14, 5995-6001.
118. Meng, K.; Gao, S.; Wu, L.; et al. Two-dimensional organic-inorganic hybrid perovskite photonic films. Nano. Lett. 2016, 16, 4166-73.
119. Zhang, H.; Zou, C.; Chen, Y.; et al. Continuous-wave vertical cavity surface-emitting lasers based on single crystalline lead halide perovskites. Adv. Opt. Mater. 2021, 9, 2001982.
120. Pourdavoud, N.; Wang, S.; Mayer, A.; et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 2017, 29, 1605003.
121. Pourdavoud, N.; Mayer, A.; Buchmüller, M.; et al. Distributed feedback lasers based on MAPbBr3. Adv. Mater. Technol. 2018, 3, 1700253.
122. Shao, Z.; Wang, Z.; Li, Z.; et al. A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 2019, 58, 5587-91.