REFERENCES

1. Freedman, B. R.; Kuttler, A.; Beckmann, N.; et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat. Biomed. Eng. 2022, 6, 1167-79.

2. Wang, T.; Wagner, A.; Gehwolf, R.; et al. Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries. Sci. Transl. Med. 2021, 13, eabe5738.

3. Cao, S.; Bo, R.; Zhang, Y. Polymeric scaffolds for regeneration of central/peripheral nerves and soft connective tissues. Adv. NanoBiomed. Res. 2023, 3, 2200147.

4. Theocharidis, G.; Yuk, H.; Roh, H.; et al. A strain-programmed patch for the healing of diabetic wounds. Nat. Biomed. Eng. 2022, 6, 1118-33.

5. Hoffman, T.; Antovski, P.; Tebon, P.; et al. Synthetic biology and tissue engineering: toward fabrication of complex and smart cellular constructs. Adv. Funct. Mater. 2020, 30, 1909882.

6. Ghalayani, E. A.; Altomare, L.; Bonetti, L.; et al. Micro-structured patches for dermal regeneration obtained via electrophoretic replica deposition. Appl. Sci. 2020, 10, 5010.

7. Mu, Y.; Gao, W.; Zhou, Y.; Xiao, L.; Xiao, Y. Physiological and pathological/ectopic mineralization: from composition to microstructure. Microstructures. 2023;. , 3, 2023030.

8. Almouemen, N.; Kelly, H. M.; O’Leary, C. Tissue engineering: understanding the role of biomaterials and biophysical forces on cell functionality through computational and structural biotechnology analytical methods. Comput. Struct. Biotechnol. J. 2019, 17, 591-8.

9. Shao, M.; Bigham, A.; Yousefiasl, S.; et al. Recapitulating antioxidant and antibacterial compounds into a package for tissue regeneration: dual function materials with synergistic effect. Small 2023, 19, e2207057.

10. Jia, Q.; Li, Q.; Boucetta, H.; Xu, Z.; Zhang, L. Biomimetic-smart materials for osteochondral regeneration and repair. Microstructures 2024, 4, 2024026.

11. White, E. M.; Yatvin, J.; Grubbs, J. B.; Bilbrey, J. A.; Locklin, J. Advances in smart materials: Stimuli-responsive hydrogel thin films. J. Polym. Sci. B. Polym. Phys. 2013, 51, 1084-99.

12. Moreira, J.; Vale, A. C.; Alves, N. M. Spin-coated freestanding films for biomedical applications. J. Mater. Chem. B. 2021, 9, 3778-99.

13. Zhang, Y.; Li, C.; Guo, A.; et al. Black phosphorus boosts wet-tissue adhesion of composite patches by enhancing water absorption and mechanical properties. Nat. Commun. 2024, 15, 1618.

14. Silvestro, I.; Lopreiato, M.; Scotto, D. A. A.; et al. Hyaluronic acid reduces bacterial fouling and promotes fibroblasts’ adhesion onto chitosan 2D-wound dressings. Int. J. Mol. Sci. 2020, 21, 2070.

15. Draczynski, Z.; Kolesinska, B.; Latanska, I.; Sujka, W. Preparation method of porous dressing materials based on butyric-acetic chitin co-polyesters. Materials. (Basel). 2018, 11, 2359.

16. Gong, M.; Huang, C.; Huang, Y.; et al. Core-sheath micro/nano fiber membrane with antibacterial and osteogenic dual functions as biomimetic artificial periosteum for bone regeneration applications. Nanomedicine 2019, 17, 124-36.

17. Hafezi, F.; Scoutaris, N.; Douroumis, D.; Boateng, J. 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. Int. J. Pharm. 2019, 560, 406-15.

18. Zhang, Y.; Hu, J.; Xie, R.; et al. A programmable, fast-fixing, osteo-regenerative, biomechanically robust bone screw. Acta. Biomater. 2020, 103, 293-305.

19. Blacklow, S. O.; Li, J.; Freedman, B. R.; Zeidi, M.; Chen, C.; Mooney, D. J. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 2019, 5, eaaw3963.

20. Tang, S.; Feng, K.; Yang, R.; et al. Multifunctional adhesive hydrogels: from design to biomedical applications. Adv. Healthc. Mater. 2025, 14, e2403734.

21. Sun, Y.; Tang, Y.; He, Y.; et al. A self-powered wound dressing based on “Lock-ON/OFF” drug release combined electric stimulus therapy for accelerated infected wound healing. Adv. Funct. Mater. 2024, 34, 2315086.

22. Dong, Y.; Zhang, X.; Chen, Y.; Yu, J.; Li, X.; Ding, B. “Stiff-elastic” binary synergistic fibrous tape with thermal-triggered shrinkable and shape recoverable performances for wound closure. Adv. Funct. Mater. 2024, 34, 2402252.

23. Yakubov, S. J.; Wittel, J.; Johnson, G. CRT-700.20 foldax TRIA TAVI: a novel-polymer transcatheter aortic valve: pilot chronic ovine model study. JACC:. Cardiovasc. Interv. 2022, 15, S59-60.

24. Zhang, Y.; Zheng, N.; Cao, Y.; et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 2019, 5, eaaw1066.

25. You, D.; Chen, G.; Liu, C.; et al. 4D Printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv. Funct. Mater. 2021, 31, 2103920.

26. Zhang, Y.; Hu, J.; Zhu, S.; Qin, T.; Ji, F. A “trampoline” nanocomposite: tuning the interlayer spacing in graphene oxide/polyurethane to achieve coalesced mechanical and memory properties. Compos. Sci. Technol. 2019, 180, 14-22.

27. Lou, D.; Sun, Y.; Li, J.; et al. Double lock label based on thermosensitive polymer hydrogels for information camouflage and multilevel encryption. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117066.

28. Zhang, Y.; Li, C.; Zhang, W.; et al. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioact. Mater. 2022, 16, 218-31.

29. Cheng, S. Q.; Zhang, S. Y.; Min, X. H.; et al. Photoresponsive solid nanochannels membranes: design and applications. Small 2022, 18, e2105019.

30. Yi, J.; Zou, G.; Huang, J.; et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023, 624, 295-302.

31. Dong, C.; Carnicer-Lombarte, A.; Bonafè, F.; et al. Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 2024, 23, 969-76.

32. Sadeghi-Goughari, M.; Jeon, S.; Kwon, H. J. Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis. Nanotechnology 2020, 31, 245101.

33. Fattah-alhosseini, A.; Chaharmahali, R.; Alizad, S.; Kaseem, M.; Dikici, B. A review of smart polymeric materials: recent developments and prospects for medicine applications. Hybrid. Advances. 2024, 5, 100178.

34. Park, D.; Kim, J. W.; Shin, K.; Kim, J. W. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Carbohydr. Polym. 2021, 272, 118459.

35. Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 2021, 33, e2000713.

36. Zhai, L. Stimuli-responsive polymer films. Chem. Soc. Rev. 2013, 42, 7148-60.

37. Zhao, Q.; Wang, J.; Cui, H.; Chen, H.; Wang, Y.; Du, X. Programmed shape-morphing scaffolds enabling facile 3D endothelialization. Adv. Funct. Mater. 2018, 28, 1801027.

38. Yang, F. K.; Cholewinski, A.; Yu, L.; Rivers, G.; Zhao, B. A hybrid material that reversibly switches between two stable solid states. Nat. Mater. 2019, 18, 874-82.

39. Luo, L.; Zhang, F.; Wang, L.; Liu, Y.; Leng, J. Recent Advances in shape memory polymers: multifunctional materials, multiscale structures, and applications. Adv. Funct. Materials. 2024, 34, 2312036.

40. Ávila-Martín, L. , Guzmán Silva D. Biol. Life. Sci. Forum. , 28, 4.

41. Vukomanović, M.; Gazvoda, L.; Kurtjak, M.; et al. Filler-enhanced piezoelectricity of poly-l-lactide and its use as a functional ultrasound-activated biomaterial. Small 2023, 19, e2301981.

42. Cheng, Y.; Xu, Y.; Qian, Y.; Chen, X.; Ouyang, Y.; Yuan, W. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano. Energy. 2020, 69, 104411.

43. Niu, W.; Tian, Q.; Liu, Z.; Liu, X. Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics. Adv. Mater. 2023, 35, e2304157.

44. Li, M.; Chen, J.; Shi, M.; Zhang, H.; Ma, P. X.; Guo, B. Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem. Eng. J. 2019, 375, 121999.

45. Yi, J.; Ren, X.; Li, Y.; et al. Rapid-response water-shrink films with high output work density based on polyethylene oxide and α-cyclodextrin for autonomous wound closure. Adv. Mater. 2024, 36, e2403551.

46. Ge, W.; Zhang, F.; Wang, D.; et al. Highly tough, stretchable, and solvent-resistant cellulose nanocrystal photonic films for mechanochromism and actuator properties. Small 2022, 18, e2107105.

47. Sun, M.; Elkhodiry, M.; Shi, L.; et al. A biomimetic multilayered polymeric material designed for heart valve repair and replacement. Biomaterials 2022, 288, 121756.

48. Zhang, X.; Li, P.; Zeng, J.; et al. Acetylated cellulose nanofibers enhanced bio-based polyesters derived from 10-undecanoic acid toward recyclable and degradable plastics. Chem. Eng. J. 2024, 479, 147797.

49. Seong, D.; Choi, Y.; Choi, I. C.; et al. Sticky and strain-gradient artificial epineurium for sutureless nerve repair in rodents and nonhuman primates. Adv. Mater. 2024, 36, e2307810.

50. Jin, B.; Liu, J.; Shi, Y.; Chen, G.; Zhao, Q.; Yang, S. Solvent-assisted 4D programming and reprogramming of liquid crystalline organogels. Adv. Mater. 2022, 34, e2107855.

51. Palo, M.; Rönkönharju, S.; Tiirik, K.; Viidik, L.; Sandler, N.; Kogermann, K. Bi-layered polymer carriers with surface modification by electrospinning for potential wound care applications. Pharmaceutics 2019, 11, 678.

52. Dai, X.; Heng, B. C.; Bai, Y.; et al. Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioact. Mater. 2021, 6, 2029-38.

53. Emadi, H.; Karevan, M.; Masoudi, R. M.; et al. Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applications. Polymers. (Basel). 2023, 15, 3617.

54. Ribeiro, S.; Ribeiro, C.; Carvalho, E. O.; et al. Magnetically activated electroactive microenvironments for skeletal muscle tissue regeneration. ACS. Appl. Bio. Mater. 2020, 3, 4239-52.

55. Di, M.; Sun, X.; Hu, L.; et al. Hollow COF selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy. Adv. Funct. Mater. 2022, 32, 2111594.

56. Sun, L.; Che, L.; Li, M.; et al. Reinforced nacre-like MXene/Sodium alginate composite films for bioinspired actuators driven by moisture and sunlight. Small 2024, 20, e2406832.

57. Silva, J. M.; Vilela, C.; Girão, A. V.; et al. Wood inspired biobased nanocomposite films composed of xylans, lignosulfonates and cellulose nanofibers for active food packaging. Carbohydr. Polym. 2024, 337, 122112.

58. Lv, S.; Yuan, X.; Xiao, J.; Jiang, X. Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair. Carbohydr. Polym. 2023, 313, 120888.

59. Savencu, I.; Iurian, S.; Porfire, A.; Bogdan, C.; Tomuță, I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 2021, 168, 105059.

60. Nasri-Nasrabadi, B.; Mehrasa, M.; Rafienia, M.; Bonakdar, S.; Behzad, T.; Gavanji, S. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr. Polym. 2014, 108, 232-8.

61. Aramwit, P.; Ratanavaraporn, J.; Ekgasit, S.; Tongsakul, D.; Bang, N. A green salt-leaching technique to produce sericin/PVA/glycerin scaffolds with distinguished characteristics for wound-dressing applications. J. Biomed. Mater. Res. B. Appl. Biomater. 2015, 103, 915-24.

62. Poonguzhali, R.; Khaleel, B. S.; Sugantha, K. V. Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. Int. J. Biol. Macromol. 2018, 114, 204-13.

63. Liang, X.; Qi, Y.; Pan, Z.; et al. Design and preparation of quasi-spherical salt particles as water-soluble porogens to fabricate hydrophobic porous scaffolds for tissue engineering and tissue regeneration. Mater. Chem. Front. 2018, 2, 1539-53.

64. Kelso, M. V.; Mahenderkar, N. K.; Chen, Q.; Tubbesing, J. Z.; Switzer, J. A. Spin coating epitaxial films. Science 2019, 364, 166-9.

65. Fujie, T. Development of free-standing polymer nanosheets for advanced medical and health-care applications. Polym. J. 2016, 48, 773-80.

66. Chiarelli, P. A.; Johal, M. S.; Holmes, D. J.; Casson, J. L.; Robinson, J. M.; Wang, H. Polyelectrolyte spin-assembly. Langmuir 2002, 18, 168-73.

67. Tyona, M. A theoritical study on spin coating technique. Adv. Mat. Res. 2013, 2, 195-208.

68. Nishiyama, T.; Sumihara, T.; Sato, E.; Horibe, H. Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by a spin-coating process. Polym. J. 2017, 49, 319-25.

69. Okamura, Y.; Kabata, K.; Kinoshita, M.; et al. Fragmentation of poly(lactic acid) nanosheets and patchwork treatment for burn wounds. Adv. Mater. 2013, 25, 545-51.

70. Shi, X.; Fujie, T.; Saito, A.; et al. Periosteum-mimetic structures made from freestanding microgrooved nanosheets. Adv. Mater. 2014, 26, 3290-6.

71. Fujie, T.; Saito, A.; Kinoshita, M.; et al. Dual therapeutic action of antibiotic-loaded nanosheets for the treatment of gastrointestinal tissue defects. Biomaterials 2010, 31, 6269-78.

72. Puiggalí-Jou, A.; Pérez-Madrigal, M. M.; Del, V. L. J.; et al. Confinement of a β-barrel protein in nanoperforated free-standing nanomembranes for ion transport. Nanoscale 2016, 8, 16922-35.

73. Fujie, T.; Matsutani, N.; Kinoshita, M.; Okamura, Y.; Saito, A.; Takeoka, S. Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Adv. Funct. Mater. 2009, 19, 2560-8.

74. Zhao, G.; Zhang, X.; Lu, T. J.; Xu, F. Recent Advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Funct. Mater. 2015, 25, 5726-38.

75. Wang, L.; Huang, T.; Xu, X.; et al. Robust dual equivariant gradient antibacterial wound dressing-loaded artificial skin with nano-chitin particles via an electrospinning-reactive strategy. Adv. Fiber. Mater. 2025, 7, 204-18.

76. Qin, M.; Ma, J.; Wu, B.; Li, K.; Yi, X. Microstructure and hydrophobicity of PVDF-based films prepared by electrospinning technique. J. Phys. Chem. C. 2024, 128, 3609-15.

77. Mishra, R. K.; Mishra, P.; Verma, K.; et al. Electrospinning production of nanofibrous membranes. Environ. Chem. Lett. 2019, 17, 767-800.

78. Rahmati, M.; Mills, D. K.; Urbanska, A. M.; et al. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721.

79. Liu, B.; Li, H.; Meng, F.; et al. 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 2024, 15, 1587.

80. Yang, Y.; Yao, Z.; Sun, Y.; et al. 3D-printed manganese dioxide incorporated scaffold promotes osteogenic-angiogenic coupling for refractory bone defect by remodeling osteo-regenerative microenvironment. Bioact. Mater. 2025, 44, 354-70.

81. Jeong, S.; Jo, M.; Ahn, H. 3D-printed film architecture via automatic micro 3D-printing system: Micro-intersection engineering of V2O5 thin/thick films for ultrafast electrochromic energy storage devices. Chem. Eng. J. 2023, 475, 146503.

82. Shin, C. S.; Cabrera, F. J.; Lee, R.; et al. 3D-bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Adv. Mater. 2021, 33, e2003778.

83. Zhang, W.; Wang, H.; Wang, H.; et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 2021, 12, 112.

84. Ren, L.; Li, Z.; Liu, Q.; et al. Programmable 4D printing of bioinspired solvent-driven morphing composites. Adv. Mater. Technol. 2021, 6, 2001289.

85. Almotairy, A.; Alyahya, M.; Althobaiti, A.; et al. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int. J. Pharm. 2023, 635, 122709.

86. Wang, P.; Sun, Y.; Li, D.; et al. Extrusion-based 3D co-printing: Printing material design and novel workflow for fabricating patterned heterogeneous tissue structures. Materials. &. Design. 2023, 227, 111737.

87. Andriotis, E. G.; Eleftheriadis, G. K.; Karavasili, C.; Fatouros, D. G. Development of bio-active patches based on pectin for the treatment of ulcers and wounds using 3D-bioprinting technology. Pharmaceutics 2020, 12, 56.

88. Wang, Q.; Zhang, Y.; Shao, F.; et al. Bio-inspired design of 4D‐printed scaffolds capable of programmable multi-step transformations toward vascular reconstruction. Adv. Funct. Mater. 2024, 34, 2407592.

89. Huang, T.; Sun, Z.; Heath, D. E.; O’Brien-Simpson, N.; O’Connor, A. J. 3D printed and smart alginate wound dressings with pH-responsive drug and nanoparticle release. Chem. Eng. J. 2024, 492, 152117.

90. Ma, Y.; Hua, M.; Wu, S.; et al. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci. Adv. 2020, 6, eabd2520.

91. Ryplida, B.; Lee, K. D.; In, I.; Park, S. Y. Light-induced swelling‐responsive conductive, adhesive, and stretchable wireless film hydrogel as electronic artificial skin. Adv. Funct. Mater. 2019, 29, 1903209.

92. Li, S.; Zhang, H.; Xie, J.; et al. In vivo self-assembled shape-memory polyurethane for minimally invasive delivery and therapy. Mater. Horiz. 2023, 10, 3438-49.

93. Montgomery, M.; Ahadian, S.; Davenport, H. L.; et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 2017, 16, 1038-46.

94. Wang, J.; Xiong, H.; Zhu, T.; et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS. Nano. 2020, 14, 12579-95.

95. Cui, Y.; Li, L.; Liu, C.; et al. Water-responsive 3D electronics for smart biological interfaces. Nano. Lett. 2023, 23, 11693-701.

96. Cremonini, A.; Sol, J. A. H. P.; Schenning, A. P. H. J.; Masiero, S.; Debije, M. G. The interplay between different stimuli in a 4d printed photo-, thermal-, and water-responsive liquid crystal elastomer actuator. Chem. -. Eur. J. 2023, 29, e202300648.

97. Zhang, M.; An, H.; Gu, Z.; et al. Mimosa-inspired stimuli-responsive curling bioadhesive tape promotes peripheral nerve regeneration. Adv. Mater. 2023, 35, e2212015.

98. Zhang, B.; Filion, T. M.; Kutikov, A. B.; Song, J. Facile Stem cell delivery to bone grafts enabled by smart shape recovery and stiffening of degradable synthetic periosteal membranes. Adv. Funct. Mater. 2017, 27, 1604784.

99. Lanzalaco, S.; Turon, P.; Weis, C.; et al. Toward the new generation of surgical meshes with 4D response: soft, dynamic, and adaptable. Adv. Funct. Mater. 2020, 30, 2004145.

100. Paula, C. T.; Madeira, A. B.; Pereira, P.; et al. ROS-degradable PEG-based wound dressing films with drug release and antibacterial properties. Eur. Polym. J. 2022, 177, 111447.

101. Zha, K.; Xiong, Y.; Zhang, W.; et al. Waste to Wealth: Near-infrared/pH dual-responsive copper-humic acid hydrogel films for bacteria-infected cutaneous wound healing. ACS. Nano. 2023, 17, 17199-216.

102. Liu, Y.; Wang, L.; Liu, Z.; et al. Durable Immunomodulatory nanofiber niche for the functional remodeling of cardiovascular tissue. ACS. Nano. 2024, 18, 951-71.

103. Huang, K.; Li, X.; Chen, W.; et al. Flexible intelligent array patch based on synergy of polyurethane and nanofiber for sensitive monitor and smart treatment. Chem. Eng. J. 2022, 443, 136378.

104. Song, Q.; Wang, D.; Li, H.; et al. Dual-response of multi-functional microsphere system to ultrasound and microenvironment for enhanced bone defect treatment. Bioact. Mater. 2024, 32, 304-18.

105. Zheng, Z.; Wang, R.; Lin, J.; et al. Liquid crystal modified polylactic acid improves cytocompatibility and M2 polarization of macrophages to promote osteogenesis. Front. Bioeng. Biotechnol. 2022, 10, 887970.

106. Huang, Z.; Xu, J.; Chen, J.; et al. Photoacoustic stimulation promotes the osteogenic differentiation of bone mesenchymal stem cells to enhance the repair of bone defect. Sci. Rep. 2017, 7, 15842.

107. Qiao, Z.; Lian, M.; Liu, X.; et al. Electreted sandwich membranes with persistent electrical stimulation for enhanced bone regeneration. ACS. Appl. Mater. Interfaces. 2022, 14, 31655-66.

108. Yarger, J. L.; Cherry, B. R.; van, V. A. Uncovering the structure-function relationship in spider silk. Nat. Rev. Mater. 2018, 3, BFnatrevmats20188.

109. Yang, Y.; Li, C.; Palmer, L. C.; Stupp, S. I. Autonomous hydrogel locomotion regulated by light and electric fields. Sci. Adv. 2023, 9, eadi4566.

110. Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020, 142, 8447-53.

111. Li, C.; Xue, Y.; Han, M.; et al. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter 2021, 4, 1377-90.

112. Guo, K.; Yang, X.; Zhou, C.; Li, C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination. Nat. Commun. 2024, 15, 1694.

113. Zhou, H.; Tang, D.; Kang, X.; et al. Degradable pseudo conjugated polymer nanoparticles with nir-ii photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapy. Adv. Sci. (Weinh). 2022, 9, e2200732.

114. Zheng, B. D.; Xiao, M. T. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr. Polym. 2023, 299, 120228.

115. Zeng, F.; Tang, L.; Zhang, Q.; et al. Coordinating the mechanisms of action of ferroptosis and the photothermal effect for cancer theranostics. Angew. Chem. 2022, 134, e202112925.

116. Aldalawi, A. A.; Suardi, N.; Ahmed, N. M.; et al. Comparison of wavelength-dependent penetration depth of 532 nm and 660 nm lasers in different tissue types. J. Lasers. Med. Sci. 2023, 14, e28.

117. Finlayson, L.; Barnard, I. R. M.; McMillan, L.; et al. Depth penetration of light into skin as a function of wavelength from 200 to 1000 nm. Photochem. Photobiol. 2022, 98, 974-81.

118. Zhang, Y.; Hu, J.; Zhao, X.; Xie, R.; Qin, T.; Ji, F. Mechanically robust shape memory polyurethane nanocomposites for minimally invasive bone repair. ACS. Appl. Bio. Mater. 2019, 2, 1056-65.

119. Clerc, M.; Sandlass, S.; Rifaie-Graham, O.; et al. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem. Soc. Rev. 2023, 52, 8245-94.

120. Kuang, X.; Rong, Q.; Belal, S.; et al. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 2023, 382, 1148-55.

121. Elias, W. J.; Lipsman, N.; Ondo, W. G.; et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 2016, 375, 730-9.

122. Zhou, Y.; Ji, X.; Niu, J.; et al. Ultrasound-guided high-intensity focused ultrasound for devascularization of uterine fibroid: a feasibility study. Ultrasound. Med. Biol. 2021, 47, 2622-35.

123. Zhu, Y.; Deng, K.; Zhou, J.; et al. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat. Commun. 2024, 15, 1123.

124. Choi, J. H.; Lee, J. S.; Yang, D. H.; et al. Development of a temperature-responsive hydrogel incorporating PVA into NIPAAm for controllable drug release in skin regeneration. ACS. Omega. 2023, 8, 44076-85.

125. Liu, W.; Wang, A.; Yang, R.; et al. Water-triggered stiffening of shape-memory polyurethanes composed of hard backbone dangling PEG soft segments. Adv. Mater. 2022, 34, e2201914.

126. Hu, H.; Wang, H.; Yang, Y.; Xu, J. F.; Zhang, X. A bacteria-responsive porphyrin for adaptable photodynamic/photothermal therapy. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200799.

127. Weiser, J. R.; Saltzman, W. M. Controlled release for local delivery of drugs: barriers and models. J. Control. Release. 2014, 190, 664-73.

128. Cheah, E.; Bansal, M.; Nguyen, L.; et al. Electrically responsive release of proteins from conducting polymer hydrogels. Acta. Biomater. 2023, 158, 87-100.

129. Boehler, C.; Oberueber, F.; Asplund, M. Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules. J. Control. Release. 2019, 304, 173-80.

130. Chikar, J. A.; Hendricks, J. L.; Richardson-Burns, S. M.; Raphael, Y.; Pfingst, B. E.; Martin, D. C. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 2012, 33, 1982-90.

131. Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1, 0008.

132. Huo, S.; Zhao, P.; Shi, Z.; et al. Mechanochemical bond scission for the activation of drugs. Nat. Chem. 2021, 13, 131-9.

133. Mu, Q.; Cui, K.; Wang, Z. J.; et al. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 2022, 13, 6213.

134. Zhao, Q.; Wang, J.; Wang, Y.; Cui, H.; Du, X. A stage-specific cell-manipulation platform for inducing endothelialization on demand. Natl. Sci. Rev. 2020, 7, 629-43.

135. Hu, M.; Guo, J.; Du, J.; et al. Development of Ca2+-based, ion-responsive superabsorbent hydrogel for cement applications: self-healing and compressive strength. J. Colloid. Interface. Sci. 2019, 538, 397-403.

136. Nagase, K.; Yamato, M.; Kanazawa, H.; Okano, T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 2018, 153, 27-48.

137. Harris-Tryon, T. A.; Grice, E. A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940-5.

138. Rastogi, A.; Goyal, G.; Kesavan, R.; et al. Long term outcomes after incident diabetic foot ulcer: multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study: epidemiology of diabetic foot complications study. Diabetes. Res. Clin. Pract. 2020, 162, 108113.

139. Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann. Med. 2017, 49, 106-16.

140. Chen, L.; Sun, S.; Gao, Y.; Ran, X. Global mortality of diabetic foot ulcer: a systematic review and meta-analysis of observational studies. Diabetes. Obes. Metab. 2023, 25, 36-45.

141. Liang, W.; Lu, Q.; Yu, F.; et al. A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomater. Sci. 2021, 9, 7124-33.

142. Pandit, A. P.; Koyate, K. R.; Kedar, A. S.; Mute, V. M. Spongy wound dressing of pectin/carboxymethyl tamarind seed polysaccharide loaded with moxifloxacin beads for effective wound heal. Int. J. Biol. Macromol. 2019, 140, 1106-15.

143. Lazarus, E.; Barnum, L.; Ramesh, S.; et al. Engineering tools for stimulating wound healing. Appl. Phys. Rev. 2024, 11, 021304.

144. Moeinipour, A.; Afkhami, A.; Madrakian, T. Stimuli-responsive polymeric film based on hydrogen-bonded organic framework designing as a smart wound dressing. Iran. Polym. J. . DOI: 10.1007/s13726-024-01443-1.

145. Veves, A.; Sheehan, P.; Pham, H. T. A randomized, controlled trial of promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch. Surg. 2002, 137, 822-7.

146. Lin, Y. H.; Hsu, W. S.; Chung, W. Y.; Ko, T. H.; Lin, J. H. Silver-based wound dressings reduce bacterial burden and promote wound healing. Int. Wound. J. 2016, 13, 505-11.

147. Libby, P.; Bornfeldt, K. E.; Tall, A. R. Atherosclerosis: successes, surprises, and future challenges. Circ. Res. 2016, 118, 531-4.

148. Liu, Y.; Li, C.; Yang, X.; Yang, B.; Fu, Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater. Sci. 2024, 12, 3805-25.

149. Hu, N.; Shi, J. X.; Chen, C.; et al. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat. Commun. 2024, 15, 9580.

150. Chen, Y.; Long, X.; Lin, W.; et al. Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J. Mater. Chem. B. 2021, 9, 322-35.

151. Khaing, Z. Z.; Schmidt, C. E. Advances in natural biomaterials for nerve tissue repair. Neurosci. Lett. 2012, 519, 103-14.

152. Chang, W.; Shah, M. B.; Lee, P.; Yu, X. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Acta. Biomater. 2018, 73, 302-11.

153. Shan, Y.; Xu, L.; Cui, X.; et al. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. Mater. Horiz. 2024, 11, 1032-45.

154. Darnell, M.; O’Neil, A.; Mao, A.; Gu, L.; Rubin, L. L.; Mooney, D. J. Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E8368-77.

155. Roth, J. G.; Huang, M. S.; Navarro, R. S.; Akram, J. T.; LeSavage, B. L.; Heilshorn, S. C. Tunable hydrogel viscoelasticity modulates human neural maturation. Sci. Adv. 2023, 9, eadh8313.

156. Wang, T.; Zhai, Y.; Nuzzo, M.; Yang, X.; Yang, Y.; Zhang, X. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 2018, 182, 279-88.

157. Wei, H.; Cui, J.; Lin, K.; Xie, J.; Wang, X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone. Res. 2022, 10, 17.

158. Carmeliet, P.; Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 2005, 436, 193-200.

159. Roberts, S. J.; van, G. N.; Carmeliet, G.; Luyten, F. P. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 2015, 70, 10-8.

160. Li, Q.; Liu, W.; Hou, W.; et al. Micropatterned photothermal double-layer periosteum with angiogenesis-neurogenesis coupling effect for bone regeneration. Mater. Today. Bio. 2023, 18, 100536.

161. Yang, Y.; Rao, J.; Liu, H.; et al. Biomimicking design of artificial periosteum for promoting bone healing. J. Orthop. Translat. 2022, 36, 18-32.

162. Isomursu, A.; Park, K. Y.; Hou, J.; et al. Directed cell migration towards softer environments. Nat. Mater. 2022, 21, 1081-90.

163. Liu, C.; Yu, Q.; Yuan, Z.; et al. Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small “dynamic bridges” to regulate BMSC behaviors for osteochondral regeneration. Bioact. Mater. 2023, 25, 445-59.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/