REFERENCES
1. Wang, X.; Wang, Y.; Wu, M.; Fang, R.; Yang, X.; Wang, D. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2022, 2, 2022016.
2. Zhang, S. High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 2023, 3, 2023003.
3. Liu, X.; Webb, T.; Dai, L.; et al. Influence of halide choice on formation of low-dimensional perovskite interlayer in efficient perovskite solar cells. Energy. Environ. Mater. 2022, 5, 670-82.
4. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-61.
6. Cao, T.; Shi, X. L.; Zou, J.; Chen, Z. G. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures 2021, 1, 2021007.
7. Mao, J.; Zhu, H.; Ding, Z.; et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019, 365, 495-8.
9. Vijay, V.; Harish, S.; Archana, J.; Navaneethan, M. Synergistic effect of grain boundaries and phonon engineering in Sb substituted Bi2Se3 nanostructures for thermoelectric applications. J. Colloid. Interface. Sci. 2022, 612, 97-110.
10. Wu, Y.; Nan, P.; Chen, Z.; et al. Manipulation of band degeneracy and lattice strain for extraordinary PbTe thermoelectrics. Research 2020, 2020, 8151059.
11. Kim, S. I.; Lee, K. H.; Mun, H. A.; et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109-14.
12. Liu, W. D.; Wang, D. Z.; Liu, Q.; Zhou, W.; Shao, Z.; Chen, Z. G. High-performance GeTe-based thermoelectrics: from materials to devices. Adv. Energy. Mater. 2020, 10, 2000367.
13. Han, M. K.; Yu, B. G.; Jin, Y.; Kim, S. J. A synergistic effect of metal iodide doping on the thermoelectric properties of Bi2Te3. Inorg. Chem. Front. 2017, 4, 881-8.
14. Feng, L.; Guo, A.; Liu, K.; et al. Highly deformable Ag2Te1-xSex-based thermoelectric compounds. Mater. Today. Phys. 2023, 33, 101051.
15. Heremans, J. P.; Jovovic, V.; Toberer, E. S.; et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554-7.
16. Zheng, J.; Hong, T.; Wang, D.; Qin, B.; Gao, X.; Zhao, L. Synergistically enhanced thermoelectric properties in n-type Bi6Cu2Se4O6 through inducing resonant levels. Acta. Mater. 2022, 232, 117930.
17. Zhang, Z.; Zhao, K.; Chen, H.; et al. Entropy engineering induced exceptional thermoelectric and mechanical performances in
18. Hu, L.; Zhang, Y.; Wu, H.; et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy. Mater. 2018, 8, 1802116.
19. Sun, Y.; Wang, H.; Yao, J.; et al. High symmetry structure and large strain field fluctuation lead enhancement of thermoelectric performance of quaternary alloys by tuning configurational entropy. Chem. Eng. J. 2023, 462, 142185.
20. Liu, M.; Sun, Y.; Zhu, J.; et al. High performance GeTe thermoelectrics enabled by lattice strain construction. Acta. Mater. 2023, 244, 118565.
21. Song, Q.; Qiu, P.; Chen, H.; et al. Enhanced carrier mobility and thermoelectric performance in Cu2FeSnSe4 diamond-like compound via manipulating the intrinsic lattice defects. Mater. Today. Phys. 2018, 7, 45-53.
22. Zhang, Y. X.; Lou, Q.; Ge, Z. H.; et al. Excellent thermoelectric properties and stability realized in copper sulfides based composites via complex nanostructuring. Acta. Mater. 2022, 233, 117972.
23. Zhuang, H. L.; Hu, H.; Pei, J.; et al. High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores. Energy. Environ. Sci. 2022, 15, 2039-48.
24. Wang, T.; Huo, T.; Wang, H.; Wang, C. Quaternary chalcogenides: promising thermoelectric material and recent progress. Sci. China. Mater. 2020, 63, 8-15.
25. Song, Q.; Qiu, P.; Hao, F.; et al. Quaternary Pseudocubic Cu2TMSnSe4 (TM = Mn, Fe, Co) chalcopyrite thermoelectric materials. Adv. Elect. Mater. 2016, 2, 1600312.
26. Zhang, J.; Liu, R.; Cheng, N.; et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater. 2014, 26, 3848-53.
27. Song, Q.; Qiu, P.; Chen, H.; et al. Improved thermoelectric performance in nonstoichiometric Cu2+δMn1−δSnSe4 quaternary diamondlike compounds. ACS. Appl. Mater. Interfaces. 2018, 10, 10123-31.
28. Mehmood, F.; Sun, Y.; Su, W.; et al. Improved thermoelectric performance of in-doped quaternary Cu2MnSnSe4 alloys. Phys. Status. Solidi. 2022, 16, 2200049.
29. Sun, Y.; Abbas, A.; Wang, H.; et al. Enhancement of thermoelectric performance of Cu2MnSnSe4 alloys by regulation of lattice strain. Chem. Eng. J. 2024, 486, 150158.
30. Mukherjee, B.; Isotta, E.; Malagutti, M. A.; et al. Thermoelectric performance in disordered Cu2ZnSnSe4 nanostructures driven by ultra-low thermal conductivity. J. Alloys. Compd. 2023, 933, 167756.
31. Chen, Q.; Yan, Y.; Zhan, H.; et al. Enhanced thermoelectric performance of chalcogenide Cu2CdSnSe4 by ex-situ homogeneous nanoinclusions. J. Materiomics. 2016, 2, 179-86.
32. Cheng, Y.; Qumu, G.; Huang, T.; Miao, A.; Wen, G. Potassium ferrate enhanced active manganese oxide filter material to remove BPA: influence of NH4+, Mn2+. Sep. Purif. Technol. 2024, 341, 126903.
33. Henríquez, R.; Salazar Nogales, P.; Grez Moreno, P.; et al. Solvothermal synthesis of Cu2ZnSnSe4 nanoparticles and their visible-light-driven photocatalytic activity. Nanomaterials 2024, 14, 1079.
34. Xie, S.; Xu, Q.; Chen, Q.; Zhu, J.; Wang, Q. Realizing super-high piezoelectricity and excellent fatigue resistance in domain-engineered bismuth titanate ferroelectrics. Adv. Funct. Mater. 2024, 34, 2312645.
35. Chetty, R.; Bali, A.; Mallik, R. C. Thermoelectric properties of indium doped Cu2CdSnSe4. Intermetallics 2016, 72, 17-24.
36. Wei, K.; Nolas, G. S. Synthesis and characterization of nanostructured stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for thermoelectric applications. ACS. Appl. Mater. Interfaces. 2015, 7, 9752-7.
37. Song, Q.; Qiu, P.; Zhao, K.; Deng, T.; Shi, X.; Chen, L. Crystal structure and thermoelectric properties of Cu2Fe1-xMnxSnSe4 diamond-like chalcogenides. ACS. Appl. Energy. Mater. 2020, 3, 2137-46.