REFERENCES
2. Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. How enzymes work: analysis by modern rate theory and computer simulations. Science 2004, 303, 186-95.
3. Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Miletti, S.; Ciurli, S.; Mangani, S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 1999, 7, 205-16.
4. Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. ACC. Chem. Res. 2014, 47, 1097-105.
5. Planas-Iglesias, J.; Marques, S. M.; Pinto, G. P.; et al. Computational design of enzymes for biotechnological applications. Biotechnol. Adv. 2021, 47, 107696.
6. Shahidi, F.; Janak Kamil, Y. V. A. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends. Food. Sci. Technol. 2001, 12, 435-64.
7. Kelly, S. A.; Pohle, S.; Wharry, S.; et al. Application of ω-transaminases in the pharmaceutical industry. Chem. Rev. 2018, 118, 349-67.
8. Lin, Y. W. Biodegradation of aromatic pollutants by metalloenzymes: a structural-functional-environmental perspective. Coord. Chem. Rev. 2021, 434, 213774.
9. Pinney, M. M.; Mokhtari, D. A.; Akiva, E.; et al. Parallel molecular mechanisms for enzyme temperature adaptation. Science 2021, 371, eaay2784.
10. Gao, L.; Zhuang, J.; Nie, L.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-83.
11. Liu, M.; Wang, L.; Zhao, K.; et al. Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy. Environ. Sci. 2019, 12, 2890-923.
12. Huo, M.; Wang, L.; Wang, Y.; Chen, Y.; Shi, J. Nanocatalytic tumor therapy by single-atom catalysts. ACS. Nano. 2019, 13, 2643-53.
13. Hu, F. X.; Hu, T.; Chen, S.; et al. Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nanomicro. Lett. 2020, 13, 7.
14. Wang, D.; Wu, H.; Phua, S. Z. F.; et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.
15. Cao, F.; Sang, Y.; Liu, C.; et al. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS. Nano. 2022, 16, 855-68.
16. Fan, K.; Xi, J.; Fan, L.; et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
17. Lyu, Z.; Ding, S.; Wang, M.; et al. Iron-imprinted single-atomic site catalyst-based nanoprobe for detection of hydrogen peroxide in living cells. Nanomicro. Lett. 2021, 13, 146.
18. Liu, Y.; Ding, D.; Zhen, Y.; Guo, R. Amino acid-mediated 'turn-off/turn-on' nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 2017, 92, 140-6.
19. Karim, M. N.; Anderson, S. R.; Singh, S.; Ramanathan, R.; Bansal, V. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens. Bioelectron. 2018, 110, 8-15.
20. Wu, J.; Zhou, H.; Li, Q.; et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy. Mater. 2019, 9, 1900149.
21. Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang, J.; Zhao, Y. Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783-98.
22. Zhang, W.; Fu, Q.; Luo, Q.; Sheng, L.; Yang, J. Understanding single-atom catalysis in view of theory. JACS. Au. 2021, 1, 2130-45.
23. Li, Z.; Ji, S.; Liu, Y.; et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623-82.
24. Zhao, X.; He, D.; Xia, B. Y.; Sun, Y.; You, B. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling. Adv. Mater. 2023, 35, e2210703.
25. Singh, B.; Gawande, M. B.; Kute, A. D.; et al. Single-atom (iron-based) catalysts: synthesis and applications. Chem. Rev. 2021, 121, 13620-97.
26. Xiang, H.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, e1905994.
27. Wu, J.; Zhu, X.; Li, Q.; et al. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 2024, 15, 6174.
28. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. ACC. Chem. Res. 2013, 46, 1740-8.
29. Jiang, B.; Guo, Z.; Liang, M. Recent progress in single-atom nanozymes research. Nano. Res. 2023, 16, 1878-89.
30. Chang, Q.; Wu, J.; Zhang, R.; et al. Optimizing single-atom cerium nanozyme activity to function in a sequential catalytic system for colorimetric biosensing. Nano. Today. 2024, 56, 102236.
31. Lumsden, J.; Hall, D. O. Superoxide dismutase in photosynthetic organisms provides an evolutionary hypothesis. Nature 1975, 257, 670-2.
32. Seefeldt, L. C.; Hoffman, B. M.; Peters, J. W.; et al. Energy transduction in nitrogenase. ACC. Chem. Res. 2018, 51, 2179-86.
34. Van, S. C.; Decamps, L.; Cutsail, G. E.; et al. The spectroscopy of nitrogenases. Chem. Rev. 2020, 120, 5005-81.
35. Wikström, M.; Krab, K.; Sharma, V. Oxygen activation and energy conservation by cytochrome c oxidase. Chem. Rev. 2018, 118, 2469-90.
36. He, Z.; He, K.; Robertson, A. W.; et al. Atomic structure and dynamics of metal dopant pairs in graphene. Nano. Lett. 2014, 14, 3766-72.
37. Ye, W.; Chen, S.; Lin, Y.; et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865-78.
38. Zhang, N.; Zhou, T.; Ge, J.; et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter 2020, 3, 509-21.
39. Zhang, S.; Wu, Y.; Zhang, Y. X.; Niu, Z. Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Sci. China. Chem. 2021, 64, 1908-22.
40. Yang, X.; Xu, L.; Li, Y. Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev. 2024, 516, 215961.
41. Du, C.; Gao, Y.; Chen, H.; et al. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A. 2020, 8, 16994-7001.
42. Shi, X.; Lv, J.; Deng, S.; et al. Construction of interlayer coupling diatomic nanozyme with peroxidase-like and photothermal activities for efficient synergistic antibacteria. Adv. Sci. 2024, 11, e2305823.
43. Wang, S.; Hu, Z.; Wei, Q.; et al. Diatomic active sites nanozymes: enhanced peroxidase-like activity for dopamine and intracellular
44. Zeng, R.; Gao, Q.; Xiao, L.; et al. Precise tuning of the D-band center of dual-atomic enzymes for catalytic therapy. J. Am. Chem. Soc. 2024, 146, 10023-31.
45. Ma, C. B.; Xu, Y.; Wu, L.; et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem. Int. Ed. 2022, 61, e202116170.
46. Chen, Q.; Liu, Y.; Lu, Y.; et al. Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. J. Hazard. Mater. 2022, 422, 126929.
47. Li, B.; Ma, R.; Chen, L.; et al. Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus. Nat. Commun. 2023, 14, 7312.
48. Li, M.; Wang, G.; Dai, J.; et al. Bioinspired CuZn-N/C single-atom nanozyme with high substrate specificity for selective online monitoring of epinephrine in living brain. Anal. Chem. 2023, 95, 14365-74.
49. Tian, R.; Ma, H.; Ye, W.; et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 2022, 32, 2204025.
50. Li, K.; Miao, Y.; Song, K.; et al. Collaborative CuMn diatomic nanozyme to boost nanocatalytic/mild photothermal/chemo-therapy through overcoming therapeutic resistance. Chem. Eng. J. 2023, 471, 144693.
51. Zeng, R.; Li, Y.; Hu, X.; et al. Atomically site synergistic effects of dual-atom nanozyme enhances peroxidase-like properties. Nano. Lett. 2023, 23, 6073-80.
52. Ning, S.; Zhang, Z.; Ren, Y.; et al. A synergistic dual-atom sites nanozyme augments immunogenic cell death for efficient immunotherapy. Adv. Sci. 2025, 12, e2414734.
53. Jiao, L.; Ye, W.; Kang, Y.; et al. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano. Res. 2022, 15, 959-64.
54. He, T.; Santiago, A. R. P.; Kong, Y.; et al. Atomically dispersed heteronuclear dual-atom catalysts: a new rising star in atomic catalysis. Small 2022, 18, e2106091.
55. Wang, Y.; Wang, Y.; Lee, L. Y. S.; Wong, K. Y. An emerging direction for nanozyme design: from single-atom to dual-atomic-site catalysts. Nanoscale 2023, 15, 18173-83.
56. Liu, M.; Li, N.; Cao, S.; et al. A "pre-constrained metal twins" strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, e2107421.
57. Zhang, M.; Lu, X.; Wu, Z.; et al. Advanced development of dual-atom catalysts: From synthesis methods to versatile electrocatalytic applications. J. Power. Sources. 2024, 613, 234923.
58. Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today. 2014, 17, 236-46.
59. Cong, B. T.; Zhao, W. H.; Liang, Z.; et al. Understanding the synergistic catalysis effect on the dual-metal-N4 embedding single-walled carbon nanotubes from first principles. Mater. Today. Commun. 2024, 38, 107800.
60. Li, J.; Xue, H.; Xu, N.; et al. Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Mater. Rep. Energy. 2022, 2, 100090.
61. Li, Z.; Ding, B.; Li, J.; et al. Multi-enzyme mimetic MoCu dual-atom nanozyme triggering oxidative stress cascade amplification for high-efficiency synergistic cancer therapy. Angew. Chem. Int. Ed. 2025, 64, e202413661.
62. Zhang, Y. X.; Zhang, S.; Huang, H.; et al. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 2023, 145, 4819-27.
63. Yang, X.; Xiang, J.; Su, W.; et al. Modulating Pt nanozyme by using isolated cobalt atoms to enhance catalytic activity for alleviating osteoarthritis. Nano. Today. 2023, 49, 101809.
64. Zhang, M.; Xu, W.; Gao, Y.; Zhou, N.; Wang, W. Manganese-iron dual single-atom catalyst with enhanced nanozyme activity for wound and pustule disinfection. ACS. Appl. Mater. Interfaces. 2023, 15, 42227-40.
65. Chen, J.; Zhong, J.; Lai, J.; et al. Enhancing catalytic performance of Fe and Mo co-doped dual single-atom catalysts with dual-enzyme activities for sensitive detection of hydrogen peroxide and uric acid. Anal. Chim. Acta. 2023, 1273, 341543.
66. Qu, Y.; Zhuang, L.; Bao, W.; et al. Atomically dispersed nanozyme-based synergistic mild photothermal/nanocatalytic therapy for eradicating multidrug-resistant bacteria and accelerating infected wound healing. RSC. Adv. 2024, 14, 7157-71.
67. Xu, J.; Zheng, X.; Feng, Z.; et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233-41.
68. Baer, D. R.; Blanchard, D. L.; Engelhard, M. H.; Zachara, J. M. The interaction of water and Mn with surfaces of CaCO3: an XPS study. Surf. Interface. Anal. 1991, 17, 25-30.
69. Ramana, C. V.; Massot, M.; Julien, C. M. XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf. Interface. Anal. 2005, 37, 412-6.
70. Tong, Y.; Wu, J.; Chen, P.; et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2018, 140, 11165-9.
71. Li, J.; Chu, D.; Dong, H.; Baker, D. R.; Jiang, R. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 2020, 142, 50-4.
72. Yang, G.; Zhu, J.; Yuan, P.; et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.
73. Shen, X.; Wang, Z.; Gao, X.; Zhao, Y. Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics. ACS. Catal. 2020, 10, 12657-65.
74. Schewe, T.; Halangk, W.; Hiebsch, C.; Rapoport, S. M. A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS. Lett. 1975, 60, 149-52.
75. Belkner, J.; Wiesner, R.; Kühn, H.; Lankin, V. Z. The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS. Lett. 1991, 279, 110-4.
76. Luo, M.; Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 2022, 5, 615-23.
77. Lv, X.; Wei, W.; Huang, B.; Dai, Y.; Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano. Lett. 2021, 21, 1871-8.
78. Chu, D.; Zhao, M.; Rong, S.; et al. Dual-atom nanozyme eye drops attenuate inflammation and break the vicious cycle in dry eye disease. Nanomicro. Lett. 2024, 16, 120.
79. Song, Z.; Ou, J.; Zhu, F.; et al. Novel enzyme cascade colorimetric nanosensing platform based on 3D diatomic nanozymes synergistically enhancing peroxidase-like activity for the detection of xanthine. Microchem. J. 2024, 207, 111735.
80. Li, J. Q.; Mao, Y. W.; Zhang, R.; Wang, A. J.; Feng, J. J. Fe-Ni dual-single atoms nanozyme with high peroxidase-like activity for sensitive colorimetric and fluorometric dual-mode detection of cholesterol. Colloids. Surf. B. Biointerfaces. 2023, 232, 113589.
81. Jin, X.; Feng, X.; Wang, G.; et al. Zn-Y dual atomic site catalyst featuring metal-metal interactions as a nanozyme with peroxidase-like activity. J. Mater. Chem. A. 2023, 11, 2326-33.
82. Liu, S.; Wei, Y.; Liang, Y.; et al. Engineering nanozymes for tumor therapy via ferroptosis self-amplification. Adv. Healthc. Mater. 2024, 13, e2400307.
83. Wang, Z.; Wen, H.; Zheng, C.; et al. Synergistic Co-Cu dual-atom nanozyme with promoted catalase-like activity for parkinson’s disease treatment. ACS. Appl. Mater. Interfaces. 2025, 17, 583-93.
84. Liu, Y.; Niu, R.; Deng, R.; Song, S.; Wang, Y.; Zhang, H. Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 2023, 145, 8965-78.
85. Wang, S.; Hu, Z.; Wei, Q.; et al. Precise design of atomically dispersed Fe, Pt dinuclear catalysts and their synergistic application for tumor catalytic therapy. ACS. Appl. Mater. Interfaces. 2022, 14, 20669-81.