REFERENCES

1. Arévalo-Cid, P.; Dias, P.; Mendes, A.; Azevedo, J. Redox flow batteries: a new frontier on energy storage. Sustain. Energy. Fuels. 2021, 5, 5366-419.

2. Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028-44.

3. Ghosh, M.; Vijayakumar, V.; Kurungot, S. Dendrite growth suppression by Zn2+-integrated nafion ionomer membranes: beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life. Energy. Technol. 2019, 7, 1900442.

4. Chen, S.; Ying, Y.; Ma, L.; et al. An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 2023, 14, 2925.

5. Olbasa, B. W.; Fenta, F. W.; Chiu, S. F.; et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS. Appl. Energy. Mater. 2020, 3, 4499-508.

6. Liu, X.; Guo, Y.; Ning, F.; et al. Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nanomicro. Lett. 2024, 16, 111.

7. Cai, Z.; Wang, J.; Sun, Y. Anode corrosion in aqueous Zn metal batteries. eScience 2023, 3, 100093.

8. Qin, H.; Kuang, W.; Hu, N.; et al. Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 2022, 32, 2206695.

9. Rosen, M. A.; Farsi, A. Battery technology: from fundamentals to thermal behavior and management. 2023. Available from: https://books.google.co.th/books?id=YpGoEAAAQBAJ [Last accessed on 18 Apr 2025]

10. Liu, Z.; Zhou, W.; He, J.; et al. Binder-free MnO2 as a high rate capability cathode for aqueous magnesium ion battery. J. Alloys. Compd. 2021, 869, 159279.

11. Zhang, N.; Wang, J.; Liu, X.; et al. Towards high-performance aqueous Zn-MnO2 batteries: formation mechanism and alleviation strategies of irreversible inert phases. Compos. Part. B. Eng. 2023, 260, 110770.

12. Hu, P.; Yan, M.; Zhu, T.; et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS. Appl. Mater. Interfaces. 2017, 9, 42717-22.

13. He, H. B.; Liu, Z.; Luo, Z. X.; Zhang, Z. H.; Chen, Y.; Zeng, J. Sustainable porous biochar coated MnO2 composites as the cathode in aqueous Zn/Mn batteries. J. Alloys. Compd. 2023, 960, 170853.

14. Feng, K.; Wang, D.; Yu, Y. Progress and prospect of Zn anode modification in aqueous zinc-ion batteries: experimental and theoretical aspects. Molecules 2023, 28, 2721.

15. Chen, Y.; Li, J.; Zhang, S.; Cui, J.; Shao, M. Highly reversible zinc anode enhanced by ultrathin MnO2 cathode material film for high-performance zinc-ion batteries. Adv. Mater. Inter. 2020, 7, 2000510.

16. Cao, J.; Wang, X.; Qian, S.; et al. De-passivation and surface crystal plane reconstruction via chemical polishing for highly reversible zinc anodes. Adv. Mater. 2024, 36, e2410947.

17. Shang, Z.; Qi, H.; Liu, X.; Ouyang, C.; Wang, Y. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. Int. J. Heat. Mass. Transfer. 2019, 130, 33-41.

18. Yang, S.; Du, H.; Li, Y.; et al. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green. Energy. Environ. 2023, 8, 1531-52.

19. Wang, M.; Dai, Z.; Yang, C.; et al. Boosting de-solvation via halloysite nanotubes-cellulose composite separator for dendrite-free zinc anodes. Mater. Today. Energy. 2024, 46, 101736.

20. Yin, C.; Pan, C.; Pan, Y.; Hu, J. Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries. J. Colloid. Interface. Sci. 2023, 642, 513-22.

21. Carvalho, M. L.; Mela, G.; Temporelli, A.; Brivio, E.; Girardi, P. Sodium-ion batteries with Ti1Al1TiC1.85 MXene as negative electrode: life cycle assessment and life critical resource use analysis. Sustainability 2022, 14, 5976.

22. Zhang, Y.; Bi, S.; Niu, Z.; Zhou, W.; Xie, S. Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy. Mater. 2022, 2, 200012.

23. Li, Y.; Guo, Y.; Li, Z.; Wang, P.; Xie, Y.; Yi, T. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries. Energy. Storage. Mater. 2024, 67, 103300.

24. Liu, M.; Tian, C.; Zhang, D.; et al. Design on modified-zinc anode with dendrite- and side reactions-free by hydrophobic organic-inorganic hybrids for ultra-stable zinc ion batteries. Nano. Energy. 2022, 103, 107805.

25. Zhou, X.; Chen, R.; Cui, E.; et al. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy. Storage. Mater. 2023, 55, 538-45.

26. Xu, W.; Wang, Y. Recent progress on zinc-ion rechargeable batteries. Nanomicro. Lett. 2019, 11, 90.

27. Naveed, A.; Ali, A.; Rasheed, T.; et al. Revisiting recent and traditional strategies for surface protection of Zn metal anode. J. Power. Sources. 2022, 525, 231122.

28. Mo, F.; He, N.; Chen, L.; et al. Strategies for stabilization of Zn anodes for aqueous Zn-based batteries: a mini review. Front. Chem. 2021, 9, 822624.

29. Kothanam, N.; Harachai, K.; Hom-On, C.; et al. Enhanced particle incorporation for co-electrodeposited Ni-P/diamond coatings with a pulse-stirring technique. App. Surf. Sci. Adv. 2023, 18, 100499.

30. Wilcox, G.; Gabe, D. Electrodeposited zinc alloy coatings. Corros. Sci. 1993, 35, 1251-8.

31. Nady, H.; Negem, M. Electroplated Zn-Ni nanocrystalline alloys as an efficient electrocatalyst cathode for the generation of hydrogen fuel in acid medium. Int. J. Hydrogen. Energy. 2018, 43, 4942-50.

32. Lotfi, N.; Aliofkhazraei, M.; Rahmani, H.; Darband, G. B. Zinc-nickel alloy electrodeposition: characterization, properties, multilayers and composites. Prot. Met. Phys. Chem. Surf. 2018, 54, 1102-40.

33. Bernasconi, R.; Panzeri, G.; Firtin, G.; Kahyaoglu, B.; Nobili, L.; Magagnin, L. Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection. J. Phys. Chem. B. 2020, 124, 10739-51.

34. Hristova, E.; Mitov, M.; Rashkov, R.; Arnaudova, M.; Popov, A. Sulphide oxidation on electrodeposited Ni-Mo-W catalysts. Bulg. Chem. Commun. 2008, 40, 291-4. Available from: http://www.bcc.bas.bg/bcc_volumes/volume_40_number_3_2008/Volume_40_Number_3_2008_PDF/2826-AC.pdf [Last accessed on 16 Apr 2025]

35. Allahyarzadeh, M.; Aliofkhazraei, M.; Rezvanian, A.; Torabinejad, V.; Sabour, R. A. Ni-W electrodeposited coatings: characterization, properties and applications. Surf. Coat. Technol. 2016, 307, 978-1010.

36. Tasić, G. S.; Lačnjevac, U.; Tasić, M. M.; et al. Influence of electrodeposition parameters of Ni-W on Ni cathode for alkaline water electrolyser. Int. J. Hydrogen. Energy. 2013, 38, 4291-7.

37. Zhang, X.; Qin, J.; Perasinjaroen, T.; et al. Preparation and hardness of pulse electrodeposited Ni-W-diamond composite coatings. Surf. Coat. Technol. 2015, 276, 228-32.

38. Kazimierczak, H.; Eliaz, N. Induced codeposition of tungsten with zinc from aqueous citrate electrolytes. Coatings 2023, 13, 2001.

39. Cao, J.; Zhang, D.; Yue, Y.; et al. Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries. Chem. Eng. J. 2021, 426, 131893.

40. Pletcher, D.; Walsh, F. C. Industrial electrochemistry, 2nd ed. Chapman and Hall; 1990. Available from: https://books.google.co.th/books?id=E_u9ARrm37oC [Last accessed on 18 Apr 2025]

41. Sunwang, N.; Wangyao, P.; Boonyongmaneerat, Y. The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings. Surf. Coat. Technol. 2011, 206, 1096-101.

42. Elias, L.; Chitharanjan, H. A. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour. Surf. Coat. Technol. 2015, 283, 61-9.

43. Li, B.; Li, G.; Zhang, D.; et al. Unveiling the impact of the polypyrrole coating layer thickness on the electrochemical performances of LiNi0.5Co0.2Mn0.3O2 in Li-ion battery. ChemistrySelect 2019, 4, 6354-60.

44. He, H.; Qin, H.; Wu, J.; et al. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy. Storage. Mater. 2021, 43, 317-36.

45. You, Y.; Fang, G.; Fan, M.; Guo, J.; Li, Q.; Wan, J. Leveraging novel microwave techniques for tailoring the microstructure of energy storage materials. Microstructures 2024, 4, 2024035.

46. Baek, M.; Kim, J.; Jeong, K.; et al. Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nat. Commun. 2023, 14, 1296.

47. Guo, X.; Zhang, Z.; Li, J.; et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS. Energy. Lett. 2021, 6, 395-403.

48. Ma, L.; Zhi, C. Zn electrode/electrolyte interfaces of Zn batteries: a mini review. Electrochem. Commun. 2021, 122, 106898.

49. Li, T.; Yan, S.; Dong, H.; et al. Engineering hydrophobic protective layers on zinc anodes for enhanced performance in aqueous zinc-ion batteries. J. Energy. Chem. 2024, 97, 1-11.

50. Deng, S.; Xu, B.; Zhao, J.; Fu, H. Advanced design for anti-freezing aqueous zinc-ion batteries. Energy. Storage. Mater. 2024, 70, 103490.

51. Xu, W.; Zhang, M.; Dong, Y.; Zhao, J. Two-dimensional materials for dendrite-free zinc metal anodes in aqueous zinc batteries. Batteries 2022, 8, 293.

52. Cao, J.; Wu, H.; Zhang, D.; et al. In-situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes. Angew. Chem. Int. Ed. 2024, 63, e202319661.

53. Zuo, Y.; Wang, K.; Pei, P.; et al. Zinc dendrite growth and inhibition strategies. Mater. Today. Energy. 2021, 20, 100692.

54. Song, Z.; Yang, C.; Kiatwisarnkij, N.; et al. Polyethylene glycol-protected zinc microwall arrays for stable zinc anodes. ACS. Appl. Mater. Interfaces. 2024, 16, 64834-45.

55. Zhang, H.; Li, F.; Li, Z.; Gao, L.; Xu, B.; Wang, C. Surface modification induces oriented Zn(002) deposition for highly stable zinc anode. Batteries 2024, 10, 178.

56. Yang, C.; Woottapanit, P.; Geng, S.; et al. Highly reversible Zn anode design through oriented ZnO(002) facets. Adv. Mater. 2024, 36, e2408908.

57. Lim, W. G.; Li, X.; Reed, D. Understanding the role of zinc hydroxide sulfate and its analogues in mildly acidic aqueous zinc batteries: a review. Small. Methods. 2024, 8, e2300965.

58. Shang, Y.; Kundu, D. Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future. Batteries. Supercaps. 2022, 5, e202100394.

59. Luo, M.; Wang, C.; Lu, H.; et al. Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy. Storage. Mater. 2021, 41, 515-21.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/