REFERENCES
1. Qiu, W.; Hao, Q.; Annamareddy, S. H. K.; Xu, B. B.; Guo, Z.; Jiang, Q. Electric Vehicle revolution and implications: ion battery and energy. Eng. Sci. 2022, 20, 100-9.
2. Hussain, S. A.; Razi, F.; Hewage, K.; Sadiq, R. The perspective of energy poverty and 1st energy crisis of green transition. Energy 2023, 275, 127487.
3. Riahi, A.; Shafii, M. B. Experimental evaluation of a vapor compression cycle integrated with a phase change material storage tank for peak load shaving. Eng. Sci. 2023, 23, 870.
4. Zhakiyev, N.; Akhmetov, Y.; Omirgaliyev, R.; et al. Comprehensive scenario analyses for coal exit and renewable energy development planning of Kazakhstan using PyPSA-KZ. Eng. Sci. 2024, 29, 1085.
5. Olabi, A.; Abdelkareem, M. A. Renewable energy and climate change. Renew. Sust. Energ. Rev. 2022, 158, 112111.
6. Lin, B.; Li, Z. Towards world's low carbon development: The role of clean energy. Appl. Energy. 2022, 307, 118160.
7. Iyke, B. N. Climate change, energy security risk, and clean energy investment. Energy. Econ. 2024, 129, 107225.
8. Hussain, A.; Arif, S. M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. and. Sust. Energy. Rev. 2017, 71, 12-28.
9. Jiang, H.; Wu, X.; Zhang, H.; et al. Toward effective electrocatalytic C-N coupling for the synthesis of organic nitrogenous compounds using CO 2 and biomass as carbon sources. SusMat 2023, 3, 781-820.
10. Rebellon, H. E.; Henao, O. F. P.; Gutierrez-velasquez, E. I.; Amell, A. A.; Colorado, H. A. Eng Sci 2024;29:1164.
11. Srivastava, M.; Surana, K.; Singh, P. K.; Singh, R. C. Nickel oxide embedded with polymer electrolyte as efficient hole transport material for perovskite solar cell. Eng. Sci. 2021, 17, 216-23.
12. Li, C. H.; Feng, M. J.; Guo, F.; et al. The evolution of tin-based perovskites solar cells. Eng. Sci. 2022, 19, 1-4.
13. Zhou, Y. F.; Feng, W. F.; Xu, Y. B.; et al. Development of silicon-based anode for lithium-ion batteries and its application in solid-state electrolytes. Eng. Sci. 2023, 28, 1060.
14. Boshoman, S. B.; Fatoba, O. S.; Jen, T. C. Transition metal oxides as electrocatalytic material in fuel cells: a review. Eng. Sci. 2023, 25, 948.
15. Zhong, Y. M.; Liu, D. C.; Yang, Q. Y.; et al. Boosting microwave absorption performance of bio-gel derived Co/C nanocomposites. Eng. Sci. 2023. DOI: 10.30919/es988.
16. Chandra RB, Shivamurthy B, Bore Gowda SB, Sathish kumar M. Flexible linear low-density polyethylene laminated aluminum and nickel foil composite tapes for electromagnetic interference shielding. Eng. Sci. 2022. DOI: 10.30919/es8d777.
17. Deng, B.; He, R.; Zhang, J.; et al. Interfacial modulation of a self-sacrificial synthesized SnO2@Sn core-shell heterostructure anode toward high-capacity reversible Li+ storage. Inorg. Chem. 2023, 62, 15736-46.
18. Wang, J.; Zhang, J.; Zhang, Y. Z.; et al. Atom-level tandem catalysis in lithium metal batteries. Adv. Mater. 2024, 36, e2402792.
19. Tong, X.; Li, N. Q.; Zeng, M.; Wang, Q. W. Organic phase change materials confined in carbo-based materials for thermal properties enhancement: recent advancement and challenges. Renew. Sust. Energy. Rev. 2019, 108, 398-422.
20. Chai, Z. Z.; Fang, M. H.; Min, X. Composite phase-change materials for photo-thermal conversion and energy storage: a review. Nano. Energy. 2024, 124, 109437.
21. Zhou, Z. X. Y.; Huang, Y. Q.; Shen, Q.; Li, Y. Y.; Cheng, X. M. Composite phase change materials with carbon-mesh/CuS/ZnO interface biocarbon skeleton for solar energy storage, solar photocatalysis and electromagnetic shielding. J. Energy. Storage. 2024, 90, 111937.
22. Rahimi, E.; Babapoor, A.; Moradi, G.; Kalantary, S.; Monazzam, E. M. Personal cooling garments and phase change materials: a review. Renew. Sust. Energy. Rev. 2024, 190, 114063.
23. Zheng, C. W.; Huang, Z. Y.; Wang, D. Y.; et al. Synthesis and properties of biomass derived carbon/PEG composite as photothermal conversion effective phase change material for functional concrete. Cement. Concrete. Comp. 2024, 149, 105495.
24. Su, J. T.; Lin, J. H.; Cao, Y.; et al. Experimental investigation and numerical simulation on microwave thermal conversion storage properties of multi-level conductive porous phase change materials and its multifunctional applications. Appl. Therm. Eng. 2024, 253, 123774.
25. Chen, X.; Cheng, P.; Tang, Z. D.; Xu, X. L.; Gao, H. Y.; Wang, G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. (Weinh). 2021, 8, 2001274.
26. Sathishkumar, A.; Sundaram, P.; Cheralathan, M.; Kumar, P. G. Effect of nano-enhanced phase change materials on performance of cool thermal energy storage system: a review. J. Energy. Storage. 2024, 78, 110079.
27. Yu, C. B.; Li, G. Q. Electrical energy harvesting by connected form stable phase change material composites. Energy. Convers. Manage. 2024, 299, 117851.
28. Naik, N.; Shivamurthy, B.; Thimmappa, B. H. S.; Gupta, A.; Guo, J. Z.; Seok, I. A review on processing methods and characterization techniques of green composites. Eng. Sci. 2022, 20, 80-99.
29. Rengga, W. D. P.; Imani, N. A. C.; Wijayati, N.; Tohiran, T.; Cahyati, W. H.; Saputra, D. Adsorption and release of ibuprofen from silica-carbon composites based on rice husks (Oryza Sativa) and banana peels (Musa Acuminata). Eng. Sci. 2023, 23, 873.
30. Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 2021, 183, 515-24.
31. Tiwari, S. K.; Bystrzejewski, M.; De, A. A.; Huczko, A.; Wang, N. N. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Prog. Energy. Combust. Sci. 2022, 92, 101023.
32. Thota, S. P.; Bag, P. P.; Vadlani, P. V.; Belliraj, S. K. Plant biomass derived multidimensional nanostructured materials: a green alternative for energy storage. Eng. Sci. 2022, 18, 31-58.
33. He, H. Z.; Zhang, R. Q.; Zhang, P. C.; et al. Functional carbon from nature: biomass-derived carbon materials and the recent progress of their applications. Adv. Sci. (Weinh). 2023, 10, e2205557.
34. Zhou, H.; Zhang, R.; Yue, C. Y.; et al. Enhanced charge transfer over sustainable biochar decorated Bi2WO6 composite photocatalyst for highly efficient water decontamination. Chin. J. Catal. 2024, 59, 169-84.
35. Culebras, M.; Collins, G. A.; Beaucamp, A.; Geaney, H.; Collins, M. N. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng. Sci. 2022, 17, 195-203.
36. Meng, L. T.; Hou, C. P.; Hou, J.; et al. Preparation and performance of in situ carbon-coated silicon monoxide@C@carbon microspheres composite anode material for lithium-ion batteries. Eng. Sci. 2022, 20, 134-43.
37. Xing, B. L.; Shi, F.; Jin, Z. Z.; et al. A facile ice-templating-induced puzzle coupled with carbonization strategy for kilogram-level production of porous carbon nanosheets as high‐capacity anode for lithium‐ion batteries. Carbon. Energy. 2024, 6, e633.
38. Sun, Z.; Qi, H. G.; Chen, M. H.; et al. Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng. Sci. 2021, 18, 59-74.
39. Liu, B.; Ye, Y.; Yang, M.; et al. All-in-one biomass-based flexible supercapacitors with high rate performance and high energy density. Adv. Funct. Mater. 2024, 34, 2310534.
40. Fu, C.; Wang, J. J.; Shen, Q. F.; Cui, Z. H.; Ding, S. Determining the optimal biomass-gasification-based fuel cell trigeneration system in exergy-based cost and carbon footprint method considering energy level. Energy. Convers. Manage. 2024, 299, 117802.
41. Qiu, L. L.; Xu, M.; Tian, W. Y.; et al. Biomass derived self-doped carbon nanosheets enable robust hole transport layers with ion buffer for perovskite solar cells. ChemSusChem 2025, 18, e202400510.
42. Lin, J.; Feng, X.; Huang, J.; et al. Flexible AIE/PCM composite fiber with biosensing of alcohol, fluorescent anti-counterfeiting and body thermal management functions. Biosens. Bioelectron. 2025, 267, 116799.
43. Ma, Y. Q.; Shen, J. F.; Li, T.; Sheng, X. X.; Chen, Y. A “net-ball” structure fiber membrane with electro-/photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy. Mater. Sol. Cells. 2024, 276, 113078.
44. Xu, W. H.; Su, J. T.; Lin, J. H.; Huang, J. T.; Weng, M. M.; Min, Y. G. Enhancing the light-thermal absorption and conversion capacity of diatom-based biomass/polyethylene glycol composites phase change material by introducing MXene. J. Energy. Storage. 2023, 72, 108253.
45. Yan, R. H.; Huang, Z.; Zhang, L.; Chen, Y.; Sheng, X. X. Cellulose-reinforced foam-based phase change composites for multi-source driven energy storage and EMI shielding. Compos. Commun. 2024, 51, 102047.
46. Yan, R. H.; Huang, Z.; Chen, Y.; Zhang, L.; Sheng, X. X. Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 2024, 277, 134233.
47. Hu, X. P.; Wu, H.; Liu, S.; et al. Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng. Sci. 2021, 17 , 1-27.
48. Xu, W. H.; Yang, W.; Su, J.; et al. Diatom-based biomass composites phase change materials with high thermal conductivity for battery thermal management. J. Energy. Storage. 2024, 96, 112737.
49. Liu, B. W.; Lv, G. C.; Liu, T. M.; et al. Research progress of biomass materials in the application of organic phase change energy storage materials. J. Mater. Chem. A. 2024, 12, 8663-82.
50. Wu, G. Z.; Bing, N. C.; Li, Y. F.; Xie, H. Q.; Yu, W. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion. Energy. Convers. Manage. 2022, 256, 115361.
51. Shen, R. B.; Weng, M. M.; Zhang, L.; Huang, J. T.; Sheng, X. X. Biomass-based carbon aerogel/Fe3O4@PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage. Compos. Part. A-Appl. S. 2022, 163, 107248.
52. Weng, M. M.; Liu, S. D.; Su, J. T.; et al. Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng. Sci. 2022, 19, 301-11.
53. Weng, M. M.; Lin, J. H.; Yang, Y. J.; et al. MXene-based phase change materials for multi-source driven energy storage, conversion and applications. Sol. Energy. Mater. Sol. Cells. 2024, 272, 112915.
54. He, X. L.; Cui, C. Q.; Chen, Y.; Zhang, L.; Sheng, X. X.; Xie, D. L. MXene and polymer collision: sparking the future of high‐performance multifunctional coatings. Adv. Funct. Mater. 2024, 34, 2409675.
55. Wang, T.; Cui, W.; Li, X. X.; Ma, T.; Wang, Q. W. Economical and shape-stabilized hydrated salt/bagasse biomass-derived carbon phase change composite for thermal energy storage. J. Energy. Storage. 2024, 85, 111083.
56. Luo, Y.; Tao, J.; Shan, Y. Z.; et al. A shape-stabilized phase change composite from biomass cork powder as a matrix for thermal energy storage and photothermal conversion. J. Energy. Storage. 2024, 77, 109914.
57. Xiong, C. Y.; Zheng, C. M.; Jiang, X.; et al. Recent progress of green biomass based composite materials applied in supercapacitors, sensors, and electrocatalysis. J. Energy. Storage. 2023, 72, 108633.
58. Hegde, S. S.; Bhat, B. R. Biomass waste-derived porous graphitic carbon for high-performance supercapacitors. J. Energy. Storage. 2024, 76, 109818.
59. Hao, R.; Yang, Y.; Wang, H.; et al. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano. Energy. 2018, 45, 220-8.
60. Chaudhary, P.; Bansal, S.; Sharma, B. B.; Saini, S.; Joshi, A. Waste biomass-derived activated carbons for various energy storage device applications: a review. J. Energy. Storage. 2024, 78, 109996.
61. Atchudan, R.; Jebakumar, I. E. T. N.; Perumal, S.; et al. Facile synthesis of nitrogen-doped porous carbon materials using waste biomass for energy storage applications. Chemosphere 2022, 289, 133225.
62. Qiu, D. P.; Kang, C. H.; Li, M.; et al. Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium-ion storage. Carbon 2020, 162, 595-603.
63. Radenković, M.; Petrović, J.; Pap, S.; et al. Waste biomass derived highly-porous carbon material for toxic metal removal: optimisation, mechanisms and environmental implications. Chemosphere 2024, 347, 140684.
64. Li, H. M.; Ma, Y. F.; Wang, Y.; et al. Nitrogen enriched high specific surface area biomass porous carbon: A promising electrode material for supercapacitors. Renew. Energy. 2024, 224, 120144.
66. Mohan, A.; Jaison, A.; Lee, H. U.; et al. Facile synthesis of N-doped biomass derived porous carbon from opuntia humifusa using simple solid state activation method for reversible capture of volatile iodine. J. Anal. Appl. Pyrolysis. 2024, 179, 106473.
68. Yu, C. L.; Dan, J. H.; Liu, Z. W.; et al. A facile, green strategy to synthesize N/P self-doped, biomass-derived, hierarchical porous carbon from water hyacinth for efficient VOCs adsorption. Fuel 2024, 358, 130136.
69. Lobato-peralta, D. R.; Arreola-ramos, C. E.; Ayala-cortés, A.; et al. Optimizing capacitance performance: solar pyrolysis of lignocellulosic biomass for homogeneous porosity in carbon production. J. Cleaner. Prod. 2024, 448, 141622.
70. Yang, Z.; Liu, X.; Ma, X.; et al. Efficient Preparation of biomass-based ultra-thin 2D porous carbon materials by in situ template-activation and its application in sodium ion capacitors. Adv. Funct. Mater. 2024, 34, 2310717.
71. Chen, Y. Y.; Liao, Y.; Qing, Y.; et al. Recent advances in plant-derived porous carbon for lithium-sulfur batteries. J. Energy. Storage. 2024, 99, 113186.
72. Chen, Z. K.; Jiang, X. L.; Boyjoo, Y.; et al. Nanoporous carbon materials derived from biomass precursors: sustainable materials for energy conversion and storage. Electrochem. Energy. Rev. 2024, 7, 223.
73. Xu, M. M.; Fu, S. Q.; Wen, Y. K.; et al. Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications. Green. Energy. Environ. 2024, 9, 584-95.
74. Zago, S.; Scarpetta-pizo, L. C.; Zagal, J. H.; Specchia, S. PGM-Free biomass-derived electrocatalysts for oxygen reduction in energy conversion devices: promising materials. Electrochem. Energy. Rev. 2024, 7, 197.
75. Niu, J.; Shao, R.; Liu, M. Y.; et al. Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv. Funct. Mater. 2019, 29, 1905095.
76. Priya, D. S.; Kennedy, L. J.; Anand, G. T. Emerging trends in biomass-derived porous carbon materials for energy storage application: a critical review. Mater. Today. Sustainability. 2023, 21, 100320.
77. Tarimo, D. J.; Oyedotun, K. O.; Sylla, N. F.; Mirghni, A. A.; Ndiaye, N. M.; Manyala, N. Waste chicken bone-derived porous carbon materials as high-performance electrode for supercapacitor applications. J. Energy. Storage. 2022, 51, 104378.
78. Yang, H. W.; Lin, H. H.; Yang, C. L.; et al. Structural regulation of carbon materials through hydrothermal mixing of biomass and its application in supercapacitors. J. Energy. Storage. 2024, 83, 110688.
79. Yuan, F.; Wu, D. L.; Guo, J.; Liu, Q.; Wang, T. Fermentation assisted preparation of O and N riched porous carbon for high performance flexible supercapacitors. Appl. Surf. Sci. 2023, 616, 156525.
80. Egun, I. L.; Liu, Z. X.; Zheng, Y. Y.; et al. Turning waste tyres into carbon electrodes for batteries: exploring conversion methods, material traits, and performance factors. Carbon. Energy. 2024, 6, e571.
81. Shen, G. Y.; Li, B. C.; Xu, Y. Y.; et al. Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries. J. Colloid. Interface. Sci. 2024, 653, 1588-99.
82. Durán-jiménez, G.; Rodriguez, J.; Stevens, L.; Kostas, E. T.; Dodds, C. Microwave pyrolysis of waste biomass and synthesis of micro-mesoporous activated carbons: The role of textural properties for CO2 and textile dye adsorption. Chem. Eng. J. 2024, 488, 150926.
83. Samage, A.; Halakarni, M.; Yoon, H.; Sanna, K. N. Sustainable conversion of agricultural biomass waste into electrode materials with enhanced energy density for aqueous zinc-ion hybrid capacitors. Carbon 2024, 219, 118774.
84. Zhang, X. H.; Han, R. Y.; Liu, Y. Z.; et al. Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: a review. Chem. Eng. J. 2023, 460, 141607.
85. Feng, Y.; Jiang, J. J.; Xu, Y. X.; et al. Biomass derived diverse carbon nanostructure for electrocatalysis, energy conversion and storage. Carbon 2023, 211, 118105.
86. Gan, J.; Chen, L. Z.; Chen, Z. J.; et al. Lignocellulosic biomass-based carbon dots: synthesis processes, properties, and applications. Small 2023, 19, e2304066.
87. Selvaraj, A. R.; Muthusamy, A.; Inho-cho; Kim, H.; Senthil, K.; Prabakar, K. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 2021, 174, 463-74.
88. Gao, J.; Wang, Z. Q.; Wang, Z. F.; et al. Biomass-based controllable morphology of carbon microspheres with multi-layer hollow structure for superior performance in supercapacitors. J. Colloid. Interface. Sci. 2024, 658, 90-9.
89. Bahadur, R.; Singh, G.; Li, Z.; et al. Hybrid nanoarchitectonics of ordered mesoporous C60-BCN with high surface area for supercapacitors and lithium-ion batteries. Carbon 2024, 216, 118568.
90. An, Y.; Ren, Z. J.; Kong, Y.; Tian, Y. C.; Jiang, B.; Shaik, F. Fluorine-based multi-halogen atom doped vinasse carbon quantum dots on vertical graphene: a bifunctional catalytic electrode for water splitting. Int. J. Hydrogen. Energy. 2024, 58, 633-45.
91. Lu, J.; Veksha, A.; Lisak, G. Conversion of municipal sewage sludge into biogenic multi-walled carbon nanotubes and hydrogen using X-Mo/MgO (X = Co, Fe, Ni) catalysts through pyrolysis-chemical vapor deposition process. Chem. Eng. J. 2024, 496, 153794.
92. Hasan M, Sayantha Aniv S, Mominul Islam M. Carbon nanosheets-based supercapacitor materials: recent advances and prospects. Chem. Rec. 2024, 24, e202300153.
93. Pandey, M.; Deshmukh, K.; Raman, A.; Asok, A.; Appukuttan, S.; Suman, G. Prospects of MXene and graphene for energy storage and conversion. Renew. Suste. Energy. Rev. 2024, 189, 114030.
94. Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681-709.
95. Yang, H.; Yin, J.; Yang, J. T.; Tang, S. B.; Zhang, W. L.; Yang, G. X. From macro to micro: biomass-derived advanced carbon microtube assembly for sodium-ion batteries. Nano. Energy. 2024, 125, 109591.
96. Wu, Q. P.; Chen, K. Y.; Shadike, Z.; Li, C. L. Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li-S batteries. ACS. Nano. 2024, 18, 13468-83.
97. Ma, Q. H.; Wang, Z. P.; Zhang, L. Y.; et al. Marrying Fe nanoclusters with 3D carbon nanofiber aerogels: triggering fast and robust faradic capacitive deionization. Sep. Purif. Technol. 2025, 353, 128503.
98. Liang, C.; Xia, H. Y.; Yin, L. H.; et al. Carbon foam directly synthesized from industrial lignin powder as featured material for high efficiency solar evaporation. Chem. Eng. J. 2024, 481, 148375.
99. Hao, X. X.; Li, D.; Peng, X. W.; Lan, W.; Liu, C. F. In situ construction of biomass derived 3D carbon framework for efficient electromagnetic interference shielding and Joule heating performance. Chem. Eng. J. 2024, 479, 147681.
100. Ding, L.; Sun, L.; Yu, J. K.; et al. 0D bio-based carbon dots and 2D MXene hybridization toward fabricating flame-retardant, conductive and sensing cellulose fabrics. Chem. Eng. J. 2024, 488, 150776.
101. Chen, Q.; Tan, X. F.; Liu, Y. G.; et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A. 2020, 8, 5773-811.
102. Tang, X. F.; Liu, D.; Wang, Y. J.; et al. Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. Prog. Mater. Sci. 2021, 118, 100770.
103. Wang, Y. L.; Zhang, M. C.; Shen, X. Y.; et al. Biomass-derived carbon materials: controllable preparation and versatile applications. Small 2021, 17, e2008079.
104. Rawat, S.; Mishra, R. K.; Bhaskar, T. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 2022, 286, 131961.
105. Mujtaba, M.; Fernandes, F. L.; Fazeli, M.; et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J. Cleaner. Prod. 2023, 402, 136815.
106. Kim, J. H.; Lee, T.; Tsang, Y. F.; Moon, D. H.; Lee, J.; Kwon, E. E. Functional use of carbon dioxide for the sustainable valorization of orange peel in the pyrolysis process. Sci. Total. Environ. 2024, 941, 173701.
107. Lee, S.; Lee, T.; Cha, H.; et al. Enhancement of syngas through integrating carbon dioxide in the catalytic pyrolysis of plantation waste. Energy. Convers. Manag. 2024, 311, 118554.
108. Varma, A. K.; Mondal, P. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Industrial. Crops. and. Products. 2017, 95, 704-17.
109. Dai, L.; Wang, Y.; Liu, Y.; et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable. and. Sustainable. Energy. Reviews. 2019, 107, 20-36.
110. Zhang, Y. N.; Liang, Y. Y.; Li, S. Y.; et al. A review of biomass pyrolysis gas: forming mechanisms, influencing parameters, and product application upgrades. Fuel 2023, 347, 128461.
111. Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy. 2018, 129, 695-716.
112. Li, J. S.; Xu, K. L.; Yao, X. W.; Liu, J. Investigation of biomass slow pyrolysis mechanisms based on the generation trends in pyrolysis products. Process. Saf. Environ. 2024, 183, 327-38.
113. Liu, J. M.; Xue, X. F.; Qin, Z. X.; Yang, Y. N.; Liang, J. Aromatic bio-oil production from corn stover by FAU + MFI dual-catalyst catalytic fast pyrolysis: a study of two catalyst parameters. Fuel 2024, 367, 131499.
114. Patel, H.; Mohanty, A.; Misra, M. Post-combustion CO2 capture using biomass based activated porous carbon: Latest advances in synthesis protocol and economics. Renew. Sust. Energy. Rev. 2024, 199, 114484.
115. Chen, H. R.; Xu, H.; Zhu, H. N.; et al. A review on bioslurry fuels derived from bio-oil and biochar: preparation, fuel properties and application. Fuel 2024, 355, 129283.
116. Lin, J. H.; Huang, J. T.; Guo, Z. H.; et al. Hydrophobic multilayered PEG@PAN/MXene/PVDF@SiO2 composite film with excellent thermal management and electromagnetic interference shielding for electronic devices. Small 2024, 20, e2402938.
117. Tan, X. F.; Liu, S. B.; Liu, Y. G.; et al. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359-72.
118. Heidarinejad, Z.; Dehghani, M. H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 2020, 18, 393-415.
119. Luo, L.; Lan, Y. L.; Zhang, Q. Q.; et al. A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors. J. Energy. Storage. 2022, 55, 105839.
120. Ullah, S.; Shah, S. S. A.; Altaf, M.; et al. Activated carbon derived from biomass for wastewater treatment: synthesis, application and future challenges. J. Anal. Appl. Pyrolysis. 2024, 179, 106480.
121. Pallarés, J.; González-cencerrado, A.; Arauzo, I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass. Bioenerg. 2018, 115, 64-73.
122. Li, X. H.; Huang, Z. H.; Shao, S. S.; Cai, Y. X. Machine learning prediction of physical properties and nitrogen content of porous carbon from agricultural wastes: effects of activation and doping process. Fuel 2024, 356, 129623.
123. Gowthami, D.; Sharma, R.; Tyagi, V.; Rathore, P. K. S.; Sarı, A. Development of a novel form-stable phase change material based on alkali activated date seed biochar to harvest solar thermal energy. J. Energy. Storage. 2024, 83, 110699.
124. Jin, C. B.; Nai, J. W.; Sheng, O. W.; et al. Biomass-based materials for green lithium secondary batteries. Energy. Environ. Sci. 2021, 14, 1326-79.
125. Yang, F. Y.; Cao, S. A.; Tang, Y. J.; Yin, K. L.; Gao, Y. J.; Pang, H. HCl-activated porous nitrogen-doped carbon nanopolyhedras with abundant hierarchical pores for ultrafast desalination. J. Colloid. Interface. Sci. 2022, 628, 236-46.
126. Hao, J. Y.; Wang, B. X.; Xu, H.; et al. Interfacial regulation of biomass-derived carbon towards high-performance supercapacitor. J. Energy. Storage. 2024, 86, 111301.
127. Zhao, Y. J.; Liu, X. T.; Li, W. H.; et al. One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: enhanced adsorption capacities for Enrofloxacin and interfacial interaction mechanisms. Chemosphere 2022, 290, 133263.
128. Ren, W. D.; Li, C.; Fan, M. J.; Wang, Y.; Li, Q. Y.; Hu, X. Production of poplar branch-derived activated carbon with acidic deep eutectic solvent pretreatment coupled with chemical activation. Fuel 2025, 381, 133417.
129. Deng, L. H.; Zhao, Y. J.; Sun, S. Z.; Feng, D. D.; Zhang, W. D. Preparation of corn straw-based carbon by “carbonization-KOH activation” two-step method: gas-solid product characteristics, activation mechanism and hydrogen storage potential. Fuel 2024, 358, 130134.
130. Romero-hernandez, J. J.; Paredes-laverde, M.; Silva-agredo, J.; Mercado, D. F.; Ávila-torres, Y.; Torres-palma, R. A. Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: kinetics, thermodynamics, and mechanisms. J. Cleaner. Prod. 2024, 434, 139935.
131. Wu, W. J.; Wu, C. L.; Zhang, G. J.; Liu, J.; Li, Y. L.; Li, G. Q. Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture. Fuel 2023, 332, 126107.
132. Kong, L. H.; Li, C.; Sun, R. X.; et al. Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl2 via modifying cellulose structure. Chin. J. Chem. Eng. 2024, 69, 227-37.
133. Zhong, R. Q.; Zhang, H. X.; Zhang, Y. L.; Yue, P.; Wu, X. L. KMnO4-assisted synthesis of hierarchical porous carbon with ultrahigh capacitance for supercapacitor. J. Energy. Storage. 2022, 51, 104346.
134. Vignesh, K.; Ganeshbabu, M.; Puneeth, N. P. N.; et al. Oxygen-rich functionalized porous carbon by KMnO4 activation on pods of prosopis juliflora for symmetric supercapacitors. J. Energy. Storage. 2023, 72, 108216.
135. Tian, X. D.; Chen, Z. C.; Hou, J.; Li, Z. Q. Electrochemical properties of porous carbon derived from coal gasification fine ash via low-temperature alkaline fusion and KOH activation. J. Energy. Storage. 2024, 75, 109557.
136. Zhai, Z. Z.; Wang, S. S.; Xu, Y. L.; et al. Starch-based carbon aerogels prepared by an innovative KOH activation method for supercapacitors. Int. J. Biol. Macromol. 2024, 257, 128587.
137. Qw, Zhang Hj, Li Yl, Zhang Xg, Pan D. Multifunctional response of biomass carbon/sodium sulfate decahydrate composite phase change materials. J. Energy. Storage. 2024, 83, 110621.
138. Chen, W.; Gong, M.; Li, K. X.; et al. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl. Energy. 2020, 278, 115730.
139. Singh, G.; Maria, R. A.; Geng, X.; Vinu, A. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chem. Eng. J. 2023, 451, 139045.
140. Xu, Z. X.; Ma, X. Q.; Zhou, J.; et al. The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: a review. J. Anal. Appl. Pyrolysis. 2022, 167, 105678.
141. Yu, S. J.; He, J. K.; Zhang, Z. E.; et al. Towards negative emissions: hydrothermal carbonization of biomass for sustainable carbon materials. Adv. Mater. 2024, 36, e2307412.
142. González-arias, J.; Sánchez, M. E.; Cara-jiménez, J.; Baena-moreno, F. M.; Zhang, Z. Hydrothermal carbonization of biomass and waste: a review. Environ. Chem. Lett. 2022, 20, 211-21.
143. Wang, T. F.; Zhai, Y. B.; Zhu, Y.; Li, C. T.; Zeng, G. M. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sust. Energy. Rev. 2018, 90, 223-47.
144. Lilian, M. J.; Bissessur, R.; Kang, K.; He, Q. S.; Hu, Y. Study of KOH-activated hydrochar for CO2 adsorption. J. Ind. Eng. Chem. 2025, 143, 240-51.
145. Zhang, P.; Chen, Y. X.; Song, X. T.; Zhang, H. R.; Cui, J. L.; Wang, B. F. Preparation of hierarchical porous carbon from corncob hydrochar by KCl enhancing K2CO3 activation for electrode material of supercapacitor. Chem. Eng. J. 2025, 503, 157703.
146. Zhang, W.; Cheng, R. R.; Bi, H. H.; Lu, Y. H.; Ma, L. B.; He, X. J. A review of porous carbons produced by template methods for supercapacitor applications. New. Carbon. Mater. 2021, 36, 69-81.
147. Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.
148. Wang, C. S.; Yan, B.; Zheng, J. J.; et al. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv. Powder. Mater. 2022, 1, 100018.
149. Tong, Z.; Yan, X.; Wang, Y.; Li, K.; Ma, W. Lightweight Si3N4@SiO2 ceramic foam for thermal insulation and electromagnetic wave transparency. Nano. Res. 2024, 17, 4298-306.
150. Kamiyama, A.; Kubota, K.; Igarashi, D.; et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. Engl. 2021, 60, 5114-20.
151. Li, H. X.; Shi, W. J.; Liu, L. Y.; et al. Coupling effect of vacancy defects and multi-adsorption sites in porous carbon cathode for high-performance aqueous zinc-ion hybrid capacitors. Chem. Eng. J. 2024, 487, 150630.
152. Jiang, M. C.; Sun, N.; Li, T. Y.; et al. Revealing the charge storage mechanism in porous carbon to achieve efficient K ion storage. Small 2024, 20, e2401478.
153. Duan, G. G.; Xiao, J. L.; Tian, Z. W.; et al. Nano-CaCO3 templated porous carbon enable high-rate and ultralong cycle performance supercapacitor. J. Energy. Storage. 2024, 78, 109934.
154. Igarashi, D.; Tanaka, Y.; Kubota, K.; et al. New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries. Adv. Energy. Mater. 2023, 13, 2302647.
155. Shi, J. S.; Cui, H. M.; Xu, J. G.; Yan, N. G.; Liu, Y. W. Design and fabrication of hierarchically porous carbon frameworks with Fe2O3 cubes as hard template for CO2 adsorption. Chem. Eng. J. 2020, 389, 124459.
156. Doustkhah, E.; Hassandoost, R.; Khataee, A.; Luque, R.; Assadi, M. H. N. Hard-templated metal-organic frameworks for advanced applications. Chem. Soc. Rev. 2021, 50, 2927-53.
157. Wang, S. Y.; Luo, L. Y.; Wu, A. P.; et al. Recent advances in tailoring zeolitic imidazolate frameworks (ZIFs) and their derived materials based on hard template strategy for multifunctional applications. Coord. Chem. Rev. 2024, 498, 215464.
158. Pavlenko, V.; Khosravi, H. S.; Żółtowska, S.; et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng,. R. 2022, 149, 100682.
159. Farghali, M.; Osman, A. I.; Mohamed, I. M. A.; et al. Strategies to save energy in the context of the energy crisis: a review. Environ. Chem. Lett. 2023, 1-37.
160. Wei, X.; Shi, X.; Li, Y.; et al. Analysis of the European energy crisis and its implications for the development of strategic energy storage in China. J. Energy. Storage. 2024, 82, 110522.
161. Zhang, K. K.; Hu, C.; Huang, H. H.; Li, B.; Huang, C. X.; Wang, S. F. Achieving efficient energy utilization by PCM in the food supply chain: encapsulation technologies, current applications, and future prospects. J. Energy. Storage. 2024, 79, 110214.
162. Huang, J.; Wu, B.; Lyu, S.; et al. Improving the thermal energy storage capability of diatom-based biomass/polyethylene glycol composites phase change materials by artificial culture methods. Sol. Energy. Mater. Sol. Cells. 2021, 219, 110797.
163. Tan, Q. L.; Liu, H. F.; Shi, Y.; Zhang, M. Y.; Yu, B. D.; Zhang, Y. Lauric acid/stearic acid/nano-particles composite phase change materials for energy storage in buildings. J. Energy. Storage. 2024, 76, 109664.
164. Zhou, J. X.; Yang, L. J.; Cao, X. Y.; et al. MXene nanosheets coated conjugated microporous polymers hollow microspheres incorporating with phase change material for continuous desalination. J. Colloid. Interface. Sci. 2024, 654, 819-29.
165. Xiao, Y. S.; Li, T.; Yang, Y. J.; et al. Exploring flame-retardant, shape-stabilized multi-functional composite phase change materials. Sol. Energy. Mater. Sol. Cells. 2025, 282, 113369.
166. Huang, J. T.; Zeng, X. F.; Yu, W. T.; Zhang, H. C.; Min, Y. G. Polyimide-based porous carbon/Ni nano-particle composites prepared by phase separation method with broadband absorption characteristics. Diamond. and. Relat. Mater. 2025, 152, 111968.
167. Cao, Y.; Zhao, Z. Z.; Zeng, X. F.; Teng, J. X.; Huang, J. T.; Min, Y. G. High-performance polyimide/polypyrrole-CNTs@PEG composites for integrated thermal management and enhanced electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2025, 8, 1202.
168. Liu, M.; Qian, R. D.; Yang, Y.; Lu, X. T.; Huang, L.; Zou, D. Q. Modification of phase change materials for electric-thermal, photo-thermal, and magnetic-thermal conversions: a comprehensive review. Adv. Funct. Mater. 2024, 34, 2400038.
169. Wang, C. J.; Liang, W. D.; Yang, Y. Y.; et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage. Renew. Energy. 2020, 153, 182-92.
170. Cao, Y.; Li, W.; Huang, D.; et al. One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage. Sol. Energy. Mater. Sol. Cells. 2022, 241, 111729.
171. Huang, J. T.; Su, J. T.; Weng, M. M.; et al. An innovative phase change composite with high thermal conductivity and sensitive light response rate for thermal energy storage. Solar. Energy. Materials. and. Solar. Cells. 2022, 245, 111872.
172. Huang, J. T.; Su, J. T.; Xu, W. H.; et al. High enthalpy efficiency lignin-polyimide porous hybrid aerogel composite phase change material with flame retardancy for superior solar-to-thermal energy conversion and storage. Sol. Energy. Mater. Sol. Cells. 2022, 248, 112036.
173. Shen, R. B.; Lian, P.; Cao, Y.; Chen, Y.; Zhang, L.; Sheng, X. X. All lignin-based sponge encapsulated phase change composites with enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. J. Energy. Storage. 2022, 54, 105338.
174. Liu, X. L.; Ni, R. Z.; Tian, Y.; Yao, H. C.; Xu, Q.; Xuan, Y. M. Environment-friendly efficient thermal energy storage paradigm based on sugarcane-derived eco-ceramics phase change composites: from material to device. Renew. Energy. 2023, 217, 119155.
175. Hu, Y.; Zhang, M. U.; Quan, B. Q.; et al. Polyethylene glycol infiltrated biomass-derived porous carbon phase change composites for efficient thermal energy storage. Adv. Compos. Hybrid. Mater. 2024, 7, 880.
176. Huo, Y. J.; Yan, T.; Pan, W. G. Efficient solar thermal storage of foamy bamboo charcoal-based composite phase change materials. Sol. Energy. 2024, 268, 112269.
177. Tian, W. S.; Xiao, Y.; Qin, G. Z.; Zheng, X. Anisotropic and shape-stable sugarcane-based phase change composites in the application of solar thermal energy storage. Energy 2024, 308, 132942.
178. Ye, X. Y.; Yang, D. J.; Yu, L. L.; Jiang, P. W.; Liu, W. F.; Lou, H. M. Phase change material composites based on 3D lignin-derived porous carbon prepared by in-situ activation for efficient solar-driven energy conversion and storage. J. Colloid. Interface. Sci. 2025, 678, 704-19.
179. Rathore, P. K. S.; Gupta, N. K.; Yadav, D.; Shukla, S. K.; Kaul, S. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review. Sustainable. Cities. and. Soc. 2022, 79, 103690.
180. Reddy, V. J.; Ghazali, M. F.; Kumarasamy, S. Advancements in phase change materials for energy-efficient building construction: a comprehensive review. J. Energy. Storage. 2024, 81, 110494.
181. Qi, C. S.; Zhang, F.; Mu, J.; Zhang, Y.; Yu, Z. M. Enhanced mechanical and thermal properties of hollow wood composites filled with phase-change material. J. Cleaner. Prod. 2020, 256, 120373.
182. Xu, J. N.; Sun, J. M.; Zhao, J. Q.; et al. Eco-friendly wood plastic composites with biomass-activated carbon-based form-stable phase change material for building energy conversion. Ind. Crops. Prod. 2023, 197, 116573.
183. Yue, X. F.; Zhang, R.; Jin, X. B.; Zhang, X. F.; Bao, G. G.; Qin, D. C. Bamboo-derived phase change material with hierarchical structure for thermal energy storage of building. J. Energy. Storage. 2023, 62, 106911.
184. Chen, M. Y.; Yu, Y.; Ouyang, D. X.; et al. Research progress of enhancing battery safety with phase change materials. Renew. Sust. Energy. Rev. 2024, 189, 113921.
185. Jiang, H.; Li, J. D.; Xie, Y. H.; et al. Design of efficient microstructured path by magnetic orientation boron nitride nanosheets/MnFe2O4 enabling waterborne polyurethane with high thermal conductivity and flame retardancy. J. Mater. Sci. Technol. 2025, 209, 207-18.
186. Wu, B. Y.; Lyu, S.; Han, H.; et al. Biomass-based shape-stabilized phase change materials from artificially cultured ship-shaped diatom frustules with high enthalpy for thermal energy storage. Compos. Part. B:. Eng. 2021, 205, 108500.
187. Muthya Goud, V.; Raval, F.; Ruben Sudhakar, D. A sustainable biochar-based shape stable composite phase change material for thermal management of a lithium-ion battery system and hybrid neural network modeling for heat flow prediction. J. Energy. Storage. 2022, 56, 106163.
188. Xiong, T.; Ok, Y. S.; Dissanayake, P. D.; et al. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles. Sci. Total. Environ. 2022, 827, 154341.
189. Huang, D. Y.; Wang, Z. B.; Sheng, X. X.; Chen, Y. Bio-based MXene hybrid aerogel/paraffin composite phase change materials with superior photo and electrical responses toward solar thermal energy storage. Sol. Energy. Mater. Sol. Cells. 2023, 251, 112124.
190. Lee, W.; Lee, J.; Yang, W.; Kim, J. Fabrication of biobased advanced phase change material and multifunctional composites for efficient thermal management. ACS. Sust. Chem. Eng. 2023, 11, 1178-89.
191. Cao, Y.; Zeng, Z. H.; Huang, D. Y.; Chen, Y.; Zhang, L.; Sheng, X. X. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano. Res. 2022, 15, 8524-35.
192. Chen, Y.; Meng, Y.; Zhang, J.; et al. Leakage Proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nanomicro. Lett. 2024, 16, 196.
193. Hou, X.; Feng, X. R.; Jiang, K.; Zheng, Y. C.; Liu, J. T.; Wang, M. Recent progress in smart electromagnetic interference shielding materials. J. Mater. Sci. Technol. 2024, 186, 256-71.
194. He, H. F.; Wang, Y. B.; Zhao, Z. L.; Wang, Q. Q.; Wei, Q. F.; Cai, Y. B. Dual-encapsulated multifunctional phase change composites based on biological porous carbon for efficient energy storage and conversion, thermal management, and electromagnetic interference shielding. J. Energy. Storage. 2022, 55, 105358.
195. Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 2023, 208, 170-90.