REFERENCES
1. Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight 2023, 3, 3.
2. Zhao, Y.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655-89.
3. Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 1-19.
4. Jiang, Q.; Zhao, Y.; Zhang, X.; et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics. 2019, 13, 460-6.
5. Lin, Y.; Lin, G.; Sun, B.; Guo, X. Nanocrystalline perovskite hybrid photodetectors with high performance in almost every figure of merit. Adv. Funct. Mater. 2018, 28, 1705589.
6. Chen, P.; Ong, W.; Shi, Z.; Zhao, X.; Li, N. Pb-based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond. Adv. Funct. Mater. 2020, 30, 1909667.
7. Ran, J.; Dyck, O.; Wang, X.; Yang, B.; Geohegan, D. B.; Xiao, K. Electron-beam-related studies of halide perovskites: challenges and opportunities. Adv. Energy. Mater. 2020, 10, 1903191.
8. Liu, D.; Guo, Y.; Que, M.; et al. Metal halide perovskite nanocrystals: application in high-performance photodetectors. Mater. Adv. 2021, 2, 856-79.
9. Yuan, M.; Quan, L. N.; Comin, R.; et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872-7.
10. Zhao, Y.; Ma, F.; Qu, Z.; et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531-4.
11. Dou, L.; Yang, Y. M.; You, J.; et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.
12. Wang, H.; Kim, D. H. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 2017, 46, 5204-36.
13. Li, Z.; Hong, E.; Zhang, X.; Deng, M.; Fang, X. Perovskite-type 2D materials for high-performance photodetectors. J. Phys. Chem. Lett. 2022, 13, 1215-25.
14. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-1.
15. Min, H.; Lee, D. Y.; Kim, J.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444-50.
16. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html. [Last accessed on 21 Jan 2025].
17. Hassan, Y.; Park, J. H.; Crawford, M. L.; et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72-7.
18. Ma, D.; Lin, K.; Dong, Y.; et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021, 599, 594-8.
19. Lin, K.; Xing, J.; Quan, L. N.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245-8.
20. Wei, Y.; Cheng, Z.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310-50.
21. Xiao, Z.; Yan, Y. Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy. Mater. 2017, 7, 1701136.
22. Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 2014, 5, 4712-5.
23. Kieslich, G.; Sun, S.; Cheetham, A. K. An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 2015, 6, 3430-3.
24. Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693.
25. Trizio L, Infante I, Abdelhady AL, Brovelli S, Manna L. Guidelines for the characterization of metal halide nanocrystals. Trends. Chem. 2021, 3, 631-44.
26. Si, H.; Zhang, S.; Ma, S.; et al. Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells. Adv. Energy. Mater. 2020, 10, 1903922.
27. Qin, M.; Chan, P. F.; Lu, X. A Systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 2021, 33, e2105290.
28. Song, K.; Liu, L.; Zhang, D.; Hautzinger, M. P.; Jin, S.; Han, Y. Atomic-resolution imaging of halide perovskites using electron microscopy. Adv. Energy. Mater. 2020, 10, 1904006.
29. Kirchartz, T.; Márquez, J. A.; Stolterfoht, M.; Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy. Mater. 2020, 10, 1904134.
30. Zai, H.; Ma, Y.; Chen, Q.; Zhou, H. Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression. J. Energy. Chem. 2021, 63, 528-49.
31. Duong, T.; Mulmudi, H. K.; Shen, H.; et al. Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano. Energy. 2016, 30, 330-40.
32. Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581-610.
33. Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842-67.
34. Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K. Electron microscopy image enhanced. Nature 1998, 392, 768-9.
35. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 2009, 8, 263-70.
36. Qi, R.; Li, N.; Du, J.; et al. Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nat. Commun. 2021, 12, 1179.
37. Yan, X.; Liu, C.; Gadre, C. A.; et al. Single-defect phonons imaged by electron microscopy. Nature 2021, 589, 65-9.
38. Yao, L.; Xia, W.; Zhang, H.; et al. In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. Nano. Energy. 2019, 60, 424-31.
39. Chen, S.; Wu, C.; Han, B.; et al. Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway. Nat. Commun. 2021, 12, 5516.
40. Zhang, D.; Zhu, Y.; Liu, L.; et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675-9.
41. Levin, B. D. A. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 2021, 4, 042005.
42. Roberts, P.; Chapman, J.; Macleod, A. A CCD-based image recording system for the CTEM. Ultramicroscopy 1982, 8, 385-96.
43. Lazić, I.; Bosch, E. G. T.; Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 2016, 160, 265-80.
44. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 2019, 25, 563-82.
45. Xiao, C.; Li, Z.; Guthrey, H.; et al. Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy. J. Phys. Chem. C. 2015, 119, 26904-11.
46. Cai, Z.; Wu, Y.; Chen, S. Energy-dependent knock-on damage of organic-inorganic hybrid perovskites under electron beam irradiation: first-principles insights. Appl. Phys. Lett. 2021, 119, 123901.
47. Liu, W.; Zheng, J.; Shang, M.; et al. Electron-beam irradiation-hard metal-halide perovskite nanocrystals. J. Mater. Chem. A. 2019, 7, 10912-7.
48. Rothmann, M. U.; Li, W.; Zhu, Y.; et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv. Mater. 2018, 30, e1800629.
49. Cai, S.; Li, Z.; Zhang, Y.; et al. Intragrain impurity annihilation for highly efficient and stable perovskite solar cells. Nat. Commun. 2024, 15, 2329.
50. Rothmann, M. U.; Li, W.; Zhu, Y.; et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nat. Commun. 2017, 8, 14547.
51. Chen, S.; Zhang, Y.; Zhang, X.; et al. General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism. Adv. Mater. 2020, 32, e2001107.
52. Chen, S.; Zhang, Y.; Zhao, J.; et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Sci. Bull. (Beijing). 2020, 65, 1643-9.
53. Li, Y.; Zhou, W.; Li, Y.; et al. Unravelling atomic structure and degradation mechanisms of organic-inorganic halide perovskites by cryo-EM. Joule 2019, 3, 2854-66.
54. Zhu, Y.; Gui, Z.; Wang, Q.; et al. Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by cryo-TEM. Nano. Energy. 2020, 73, 104820.
55. Aguiar, J. A.; Wozny, S.; Holesinger, T. G.; et al. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy. Environ. Sci. 2016, 9, 2372-82.
56. Dang, Z.; Shamsi, J.; Palazon, F.; et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS. Nano. 2017, 11, 2124-32.
57. Chen, S.; Zhang, X.; Zhao, J.; et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 2018, 9, 4807.
58. Doherty, T. A. S.; Nagane, S.; Kubicki, D. J.; et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 2021, 374, 1598-605.
59. Rothmann, M. U.; Kim, J. S.; Borchert, J.; et al. Atomic-scale microstructure of metal halide perovskite. Science 2020, 370, eabb5940.
60. Ning, Z.; Gong, X.; Comin, R.; et al. Quantum-dot-in-perovskite solids. Nature 2015, 523, 324-8.
61. Jung, H. J.; Stompus, C. C.; Kanatzidis, M. G.; Dravid, V. P. Self-passivation of 2D ruddlesden-popper perovskite by polytypic surface PbI2 encapsulation. Nano. Lett. 2019, 19, 6109-17.
62. Gao, G.; Xi, Q.; Zhou, H.; et al. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032-8.
63. Wang, D.; Wu, D.; Dong, D.; et al. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 2016, 8, 11565-70.
64. Guo, S.; Zhang, X.; Hao, M.; et al. Liquid-phase transfer of organic–inorganic halide perovskite films for TEM investigation and planar heterojunction fabrication. Adv. Opt. Mater. 2024, 12, 2301255.
65. Lyu, B.; Li, D.; Wang, Q.; et al. Pattern-matched polymer ligands toward near-perfect synergistic passivation for high-performance and stable Br/Cl mixed perovskite light-emitting diodes. Angew. Chem. Int. Ed. 2024, 63, e202408726.
66. Chen, F.; Dai, X.; Yao, K.; et al. Homogeneous mono-layer mixed-halide perovskite quantum dots towards blue light-emitting diodes with stable spectra under continuous driving. Chem. Eng. J. 2024, 486, 150435.
67. Otero-Martínez, C.; Zaffalon, M. L.; Ivanov, Y. P.; et al. Ultrasmall CsPbBr3 blue emissive perovskite quantum dots using K-alloyed Cs4PbBr6 nanocrystals as precursors. ACS. Energy. Lett. 2024, 9, 2367-77.
68. Zhou, Y.; Sternlicht, H.; Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 2019, 3, 641-61.
69. Kosasih, F. U.; Ducati, C. Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano. Energy. 2018, 47, 243-56.
70. Yao, L.; Tian, L.; Zhang, S.; et al. Low-dose transmission electron microscopy study on halide perovskites: application and challenges. EnergyChem 2023, 5, 100105.
71. Han, Y.; Wang, L.; Cao, K.; et al. In situ TEM characterization and modulation for phase engineering of nanomaterials. Chem. Rev. 2023, 123, 14119-84.
72. Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 2005, 20, 1695-707.
73. Jinschek, J. R. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions. Chem. Commun. 2014, 50, 2696-706.
74. Allen, J. J. Micro electro mechanical system design. 1th ed. CRC Press; 2005. p. 496. Available from: https://doi.org/10.1201/9781420027754. [Last accessed on 22 Jan 2025].
75. Alfarano, G. Eco-energy of subtle design. In: Gambardella, C.; editors. For nature/with nature: new sustainable design scenarios. Springer series in design and innovation. Springer, Cham; 2024. pp. 105-23. Available from: https://doi.org/10.1007/978-3-031-53122-4_8. [Last accessed on 22 Jan 2025].
76. Fan, Z.; Zhang, L.; Baumann, D.; et al. In situ transmission electron microscopy for energy materials and devices. Adv. Mater. 2019, 31, e1900608.
77. Song, Z.; Xie, Z. H. A literature review of in situ transmission electron microscopy technique in corrosion studies. Micron 2018, 112, 69-83.
78. Grancini, G.; Marras, S.; Prato, M.; et al. The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 2014, 5, 3836-42.
79. Yang, S.; Duan, Y.; Liu, Z.; Liu, S. Recent advances in CsPbX3 perovskite solar cells: focus on crystallization characteristics and controlling strategies. Adv. Energy. Mater. 2023, 13, 2201733.
80. Xie, Y.; Xue, Q.; Yip, H. Metal-halide perovskite crystallization kinetics: a review of experimental and theoretical studies. Adv. Energy. Mater. 2021, 11, 2100784.
81. Kim, B. H.; Yang, J.; Lee, D.; Choi, B. K.; Hyeon, T.; Park, J. Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv. Mater. 2018, 30, 1703316.
82. Yuan, W.; Fang, K.; You, R.; Zhang, Z.; Wang, Y. Toward in situ atomistic design of catalytic active sites via controlled atmosphere transmission electron microscopy. Acc. Mater. Res. 2023, 4, 275-86.
83. Tang, M.; Yuan, W.; Ou, Y.; et al. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: a review. ACS. Catal. 2020, 10, 14419-50.
84. Fang, K.; Yuan, W.; Wagner, J. B.; Zhang, Z.; Wang, Y. In-situ gas transmission electron microscopy. In: Sun, L.; Xu, T.; Zhang, Z.; editors. In-situ transmission electron microscopy. Singapore: Springer Nature; 2023. pp. 251-325.
85. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019-38.
86. Qin, F.; Wang, Z.; Wang, Z. L. Anomalous growth and coalescence dynamics of hybrid perovskite nanoparticles observed by liquid-cell transmission electron microscopy. ACS. Nano. 2016, 10, 9787-93.
87. Lifshitz, I.; Slyozov, V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids. 1961, 19, 35-50.
88. Wagner, C. Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung). Z. Elektrochemie,. Ber. Bunsenges. phys. Chemie. 1961, 65, 581-91.
89. Viswanatha, R.; Santra, P. K.; Dasgupta, C.; Sarma, D. D. Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 2007, 98, 255501.
90. Aguiar, J. A.; Wozny, S.; Alkurd, N. R.; et al. Effect of water vapor, temperature, and rapid annealing on formamidinium lead triiodide perovskite crystallization. ACS. Energy. Lett. 2016, 1, 155-61.
91. Wang, W.; Ghosh, T.; Yan, H.; et al. The growth dynamics of organic-inorganic metal halide perovskite films. J. Am. Chem. Soc. 2022, 144, 17848-56.
92. Zhang, X.; Wang, F.; Zhang, B.; Zha, G.; Jie, W. Ferroelastic domains in a CsPbBr3 single crystal and their phase transition characteristics: an in situ TEM study. Cryst. Growth. Des. 2020, 20, 4585-92.
93. Gu, J.; Wu, J.; Jin, C.; et al. Solvent engineering for high conversion yields of layered raw materials into large-scale freestanding hybrid perovskite nanowires. Nanoscale 2018, 10, 17722-9.
94. Ren, Y.; Liu, S.; Duan, B.; et al. Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating. J. Alloys. Compd. 2017, 705, 205-10.
95. Munir, R.; Sheikh, A. D.; Abdelsamie, M.; et al. Hybrid perovskite thin-film photovoltaics: in situ diagnostics and importance of the precursor solvate phases. Adv. Mater. 2017, 29, 1604113.
96. Sidhoum, C.; Constantin, D.; Ihiawakrim, D.; et al. Shedding light on the birth of hybrid perovskites: a correlative study by in situ electron microscopy and synchrotron-based X-ray scattering. Chem. Mater. 2023, 35, 7943-56.
97. Ma, M.; Zhang, X.; Chen, X.; et al. In situ imaging of the atomic phase transition dynamics in metal halide perovskites. Nat. Commun. 2023, 14, 7142.
98. Wu, X.; Ke, X.; Sui, M. Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors. J. Semicond. 2022, 43, 041106.
99. Funk, H.; Shargaieva, O.; Eljarrat, A.; Unger, E. L.; Koch, C. T.; Abou-Ras, D. In situ TEM monitoring of phase-segregation in inorganic mixed halide perovskite. J. Phys. Chem. Lett. 2020, 11, 4945-50.
100. Saka, H.; Kamino, T.; Ara, S.; Sasaki, K. In situ heating transmission electron microscopy. MRS. Bull. 2008, 33, 93-100.
101. Ross, F. M. In situ transmission electron microscopy. In: Hawkes, P. W.; Spence, J. C. H.; editors. Science of microscopy. New York: Springer; 2007. pp. 445-534.
102. Zhao, J.; Liang, L.; Tang, S.; et al. Graphene microheater chips for in situ TEM. Nano. Lett. 2023, 23, 726-34.
103. Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Di, C. A.; Ducati, C. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy. 2016, 1, 1-6.
104. Yang, B.; Dyck, O.; Ming, W.; et al. Observation of nanoscale morphological and structural degradation in perovskite solar cells by in situ TEM. ACS. Appl. Mater. Interfaces. 2016, 8, 32333-40.
105. Kim, T. W.; Shibayama, N.; Cojocaru, L.; Uchida, S.; Kondo, T.; Segawa, H. Real-time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation. Adv. Funct. Materials. 2018, 28, 1804039.
106. Rombach, F. M.; Haque, S. A.; Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy. Environ. Sci. 2021, 14, 5161-90.
107. Ren, G.; Han, W.; Deng, Y.; et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A. 2021, 9, 4589-625.
108. Tumen-ulzii, G.; Qin, C.; Matsushima, T.; et al. Understanding the degradation of spiro-OMeTAD-based perovskite solar cells at high temperature. Solar. RRL. 2020, 4, 2000305.
109. Wang, Y.; Duan, L.; Zhang, M.; et al. PTAA as efficient hole transport materials in perovskite solar cells: a review. Solar. RRL. 2022, 6, 2200234.
110. Seo, Y.; Kim, J. H.; Kim, D.; Chung, H.; Na, S. In situ TEM observation of the heat-induced degradation of single- and triple-cation planar perovskite solar cells. Nano. Energy. 2020, 77, 105164.
111. Ma, M.; Zhang, X.; Xu, L.; et al. Atomically unraveling the structural evolution of surfaces and interfaces in metal halide perovskite quantum dots. Adv. Mater. 2023, 35, e2300653.
112. Jeangros, Q.; Duchamp, M.; Werner, J.; et al. In situ TEM analysis of organic-inorganic metal-halide perovskite solar cells under electrical bias. Nano. Lett. 2016, 16, 7013-8.
113. Zheng, F.; Caron, J.; Migunov, V.; Beleggia, M.; Pozzi, G.; Dunin-borkowski, R. E. Measurement of charge density in nanoscale materials using off-axis electron holography. J. Electron. Spectrosc. Relat. Phenom. 2020, 241, 146881.
114. Jung, H. J.; Kim, D.; Kim, S.; Park, J.; Dravid, V. P.; Shin, B. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv. Mater. 2018, 30, e1802769.
115. Kim, M.; Ahn, N.; Cheng, D.; et al. Imaging real-time amorphization of hybrid perovskite solar cells under electrical biasing. ACS. Energy. Lett. 2021, 6, 3530-7.
116. Żak, A. M. Light-induced in situ transmission electron microscopy-development, challenges, and perspectives. Nano. Lett. 2022, 22, 9219-26.
117. Cai, S.; Gu, C.; Wei, Y.; Gu, M.; Pan, X.; Wang, P. Development of in situ optical-electrical MEMS platform for semiconductor characterization. Ultramicroscopy 2018, 194, 57-63.
118. Duan, T.; Wang, W.; Cai, S.; Zhou, Y. On-chip light-incorporated in situ transmission electron microscopy of metal halide perovskite materials. ACS. Energy. Lett. 2023, 8, 3048-53.
119. Fan, Z.; Xiao, H.; Wang, Y.; et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 2017, 1, 548-62.
120. Akhavan, K. M. A.; Raval, P.; Cherednichekno, K.; et al. Molecular-level insight into correlation between surface defects and stability of methylammonium lead halide perovskite under controlled humidity. Small. Methods. 2021, 5, e2000834.
121. Draguta, S.; Sharia, O.; Yoon, S. J.; et al. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun. 2017, 8, 200.
122. Abdelmageed, G.; Jewell, L.; Hellier, K.; et al. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 2016, 109, 233905.
123. Siegler, T. D.; Dunlap-Shohl, W. A.; Meng, Y.; et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 2022, 144, 5552-61.
124. Song, Z.; Wang, C.; Phillips, A. B.; et al. Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy. Fuels. 2018, 2, 2460-7.
125. Liu, D.; Shao, Z.; Li, C.; Pang, S.; Yan, Y.; Cui, G. Structural properties and stability of inorganic CsPbI3 perovskites. Small. Struct. 2021, 2, 2000089.
126. Saliba, M.; Matsui, T.; Seo, J. Y.; et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy. Environ. Sci. 2016, 9, 1989-97.
127. Macpherson, S.; Doherty, T. A. S.; Winchester, A. J.; et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 2022, 607, 294-300.
128. Deng, Y. H. Truth and myth of phase coexistence in methylammonium lead iodide perovskite thin film via transmission electron microscopy. Adv. Mater. 2021, 33, e2008122.
129. Deng, Y. Common phase and structure misidentifications in high-resolution TEM characterization of perovskite materials. Condens. Matter. 2021, 6, 1.
130. Kim, M.; Ham, S.; Cheng, D.; Wynn, T. A.; Jung, H. S.; Meng, Y. S. Advanced characterization techniques for overcoming challenges of perovskite solar cell materials. Adv. Energy. Mater. 2021, 11, 2001753.
131. Ren, Z.; Mastropietro, F.; Davydok, A.; et al. Scanning force microscope for in situ nanofocused X-ray diffraction studies. J. Synchrotron. Radiat. 2014, 21, 1128-33.
132. Bergmann, V. W.; Weber, S. A.; Javier, R. F.; et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 2014, 5, 5001.
133. Ferrer, O. J.; Tennyson, E. M.; Kusch, G.; et al. Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films. Nano. Ex. 2021, 2, 024002.
134. Hu, Q.; Zhao, L.; Wu, J.; et al. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles. Nat. Commun. 2017, 8, 15688.
135. Wang, H.; Liu, L.; Wang, J.; Li, C.; Hou, J.; Zheng, K. The development of iDPC-STEM and its application in electron beam sensitive materials. Molecules 2022, 27, 3829.
136. Bosch, E. G.; Lazic, I.; Lazar, S. Integrated differential phase contrast (iDPC) STEM: a new atomic resolution STEM technique to image all elements across the periodic table. Microsc. Microanal. 2016, 22, 306-7.
137. Shen, B.; Wang, H.; Xiong, H.; et al. Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature 2022, 607, 703-7.
138. Xiong, H.; Liu, Z.; Chen, X.; et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 2022, 376, 491-6.
139. Caswell, T. A.; Ercius, P.; Tate, M. W.; Ercan, A.; Gruner, S. M.; Muller, D. A. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 2009, 109, 304-11.
140. Tate, M. W.; Purohit, P.; Chamberlain, D.; et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 2016, 22, 237-49.
141. Han, Y.; Xie, S.; Nguyen, K.; et al. Picometer-precision strain mapping of two-dimensional heterostructures using an electron microscope pixel array detector (EMPAD). Microsc. Microanal. 2017, 23, 1712-3.
142. Jiang, Y.; Chen, Z.; Han, Y.; et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343-9.
143. Philipp, H.; Tate, M.; Shanks, K.; et al. Wide dynamic range, 10 kHz framing detector for 4D-STEM. Microsc. Microanal. 2021, 27, 992-3.
144. Philipp, H. T.; Tate, M. W.; Shanks, K. S.; et al. Very-high dynamic range, 10,000 frames/second pixel array detector for electron microscopy. Microsc. Microanal. 2022, 28, 425-40.
145. Scheid, A.; Wang, Y.; Jung, M.; et al. Electron ptychographic phase imaging of beam-sensitive all-inorganic halide perovskites using four-dimensional scanning transmission electron microscopy. Microsc. Microanal. 2023, 29, 869-78.
146. Song, B.; Ding, Z.; Allen, C. S.; et al. Hollow electron ptychographic siffractive imaging. Phys. Rev. Lett. 2018, 121, 146101.
147. Maiden, A. M.; Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009, 109, 1256-62.
148. Chen, Z.; Jiang, Y.; Shao, Y. T.; et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 2021, 372, 826-31.