REFERENCES

1. Chorkendorff I, Niemantsverdriet JW. Concepts of modern catalysis and kinetics. Weinheim: Wiley-VCH; 2003.

2. deJong KP. Synthesis of solid catalysts. Weinheim: Wiley-VCH; 2009.

3. Liu L, Corma A. Evolution of isolated atoms and clusters in catalysis. Trends Chem 2020;2:383-400.

4. Cao S, Tao FF, Tang Y, Li Y, Yu J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev 2016;45:4747-65.

5. Calle-Vallejo F, Loffreda D, Koper MT, Sautet P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat Chem 2015;7:403-10.

6. Groppo E, Rojas-Buzo S, Bordiga S. The role of in situ/operando IR spectroscopy in unraveling adsorbate-induced structural changes in heterogeneous catalysis. Chem Rev 2023;123:12135-69.

7. Sun Y, Deng Y, Chen H, Yang X, Lin X, Li J. Design strategies and in situ infrared, Raman, and X-ray absorption spectroscopy techniques insight into the electrocatalysts of hydrogen energy system. Small Struct 2023;4:2200201.

8. Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem Rev 2023;123:379-444.

9. Green IX, Tang W, Neurock M, Yates JT Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011;333:736-9.

10. Yang J, Liu W, Xu M, et al. Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J Am Chem Soc 2021;143:14530-9.

11. Zhang S, Nguyen L, Zhu Y, Zhan S, Tsung CK, Tao FF. In-situ studies of nanocatalysis. Acc Chem Res 2013;46:1731-9.

12. Dessal C, Len T, Morfin F, et al. Dynamics of single Pt atoms on alumina during CO oxidation monitored by operando X-ray and infrared spectroscopies. ACS Catal 2019;9:5752-9.

13. Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts - transforming from a challenge to a toolbox. Chem Rev 2015;115:2818-82.

14. Tao FF, Crozier PA. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem Rev 2016;116:3487-539.

15. Boyes ED, LaGrow AP, Ward MR, Martin TE, Gai PL. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. Philos Trans A Math Phys Eng Sci 2020;378:20190605.

16. Maurer F, Jelic J, Wang J, et al. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat Catal 2020;3:824-33.

17. Muravev V, Spezzati G, Su Y, et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat Catal 2021;4:469-78.

18. Frey H, Beck A, Huang X, van Bokhoven JA, Willinger MG. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022;376:982-7.

19. Yuan W, Zhu B, Li XY, et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020;367:428-30.

20. Zhang X, Han S, Zhu B, et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat Catal 2020;3:411-7.

21. Crozier PA, Hansen TW. In situ and operando transmission electron microscopy of catalytic materials. MRS Bull 2015;40:38-45.

22. Chee SW, Lunkenbein T, Schlögl R, Cuenya BR. In situandoperandoelectron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. J Phys Condens Matter 2021;33:153001.

23. Bañares MA, Wachs IE. Molecular structures of supported metal oxide catalysts under different environments. J Raman Spectrosc 2002;33:359-80.

24. Marton L. Electron microscopy of biological objects. Nature 1934;133:911.

25. Creemer JF, Helveg S, Hoveling GH, et al. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 2008;108:993-8.

26. Boyes E, Gai P. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 1997;67:219-32.

27. DENSsolutions. Climate: in situ TEM gas & heating. Available from: https://denssolutions.com/products/climate [Last accessed on 11 Jun 2024].

28. Perez-Garza HH, Morsink D, Xu J, Sholkina M, Pivak Y, et al. The "Climate" system: nano-reactor for in-situ analysis of solid-gas interactions inside the TEM. Proceedingsof the IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems; 2016 April 17-20; Sendai, Japan. New York City: IEEE; 2016. pp. 85-90.

29. Plodinec M, Nerl HC, Farra R, et al. Versatile homebuilt gas feed and analysis system for operando TEM of catalysts at work. Microsc Microanal 2020;26:220-8.

30. Zhou D, Spruit RG, Pen M, Garza HP, Xu Q. Correlative in-situ gas and heating TEM: integrating calorimetry and mass spectroscopy. Microsc Microanal 2020;26:3044-6.

31. Gross JH. Mass spectrometry: a textbook. Berlin: Springer International Publishing; 2017.

32. DENSsolutions info. Discover how in situ TEM advances catalysis research. Available from: https://www.youtube.com/watch?v=A1LkGWZT4Ow [Last accessed on 11 Jun 2024].

33. Zhang F, Pen M, Spruit RG, Garza HP, Liu W, Zhou D. Data synchronization in operando gas and heating TEM. Ultramicroscopy 2022;238:113549.

34. Chenna S, Crozier PA. Operando transmission electron microscopy: a technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal 2012;2:2395-402.

35. Crozier PA, Chenna S. In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy 2011;111:177-85.

36. Miller BK, Barker TM, Crozier PA. Novel sample preparation for operando TEM of catalysts. Ultramicroscopy 2015;156:18-22.

37. Miller BK, Crozier PA. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy. Microsc Microanal 2014;20:815-24.

38. Yuan W, Wu H, Li H, et al. In Situ STEM determination of the atomic structure and reconstruction mechanism of the TiO2 (001) (1 × 4) surface. Chem Mater 2017;29:3189-94.

39. Lazić I, Bosch EGT, Lazar S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 2016;160:265-80.

40. Lazic I, Bosch EGT, Lazar S. Integrated differential phase contrast (iDPC) STEM. Acta Crystallogr A Found Adv 2017;73:C117-8.

41. Zhu Y, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater 2017;16:532-6.

42. Meledina M, Watson G, Meledin A, Van Der Voort P, Mayer J, Leus K. Ru catalyst encapsulated into the pores of MIL-101 MOF: direct visualization by TEM. Materials 2021;14:4531.

43. Thomas AM, Crozier PA, Xu Y, Matteson DS. Feature detection and hypothesis testing for extremely noisy nanoparticle images using topological data analysis. Technometrics 2023;65:590-603.

44. Li S, Lin J, Chen Y, et al. Growth anisotropy and morphology evolution of line defects in monolayer MoS2: atomic-level observation, large-scale statistics, and mechanism understanding. Small 2024;20:e2303511.

45. Zhang H, Li G, Zhang J, et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 2023;380:633-8.

46. Wu M, Stroppa DG, Pelz P, Spiecker E. Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films. J Phys Mater 2023;6:045008.

47. Shen B, Chen X, Wang H, et al. A single-molecule van der Waals compass. Nature 2021;592:541-4.

48. Shen B, Wang H, Xiong H, et al. Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature 2022;607:703-7.

49. Xiong H, Liu Z, Chen X, et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 2022;376:491-6.

50. Xiong H, Wang H, Chen X, Wei F. Atomic imaging of zeolites and confined single molecules by iDPC-STEM. ACS Catal 2023;13:12213-26.

51. Abe H, Kimura Y, Ma T, Tadaki D, Hirano-iwata A, Niwano M. Response characteristics of a highly sensitive gas sensor using a titanium oxide nanotube film decorated with platinum nanoparticles. Sensor Actuat B Chem 2020;321:128525.

52. Kim J, Mirzaei A, Kim HW, Kim SS. Improving the hydrogen sensing properties of SnO2 nanowire-based conductometric sensors by Pd-decoration. Sensor Actuat B Chem 2019;285:358-67.

53. Meng J, Li H, Zhao L, et al. Triboelectric nanogenerator enhanced schottky nanowire sensor for highly sensitive ethanol detection. Nano Lett 2020;20:4968-74.

54. Wang X, Xu P, Tang L, Chen Y, Li X. Nano beta zeolites catalytic-cracking effect on hydrochlorofluorocarbon molecule for specific detection of Freon. J Mater Chem A 2021;9:15321-8.

55. Zhou T, Zhang T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors. Small Methods 2021;5:e2100515.

56. Wang X, Li M, Xu P, Chen Y, Yu H, Li X. In situ TEM technique revealing the deactivation mechanism of bimetallic Pd-Ag nanoparticles in hydrogen sensors. Nano Lett 2022;22:3157-64.

57. Abel BA, Snyder RL, Coates GW. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 2021;373:783-9.

58. Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551-7.

59. Zou Z, Habraken WJEM, Matveeva G, et al. A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate. Science 2019;363:396-400.

60. Yao F, Xu P, Li M, et al. Microreactor-based TG-TEM synchronous analysis. Anal Chem 2022;94:9009-17.

61. Li X, Xu P, Zhou Y, et al. In situ hydrogen temperature-programmed reduction technology based on the integrated microcantilever for metal oxide catalyst analysis. Anal Chem 2022;94:16502-9.

62. Alpaydin E. Introduction to machine learning. MIT Press, 2020. Available from: https://mitpress.mit.edu/9780262012119/introduction-to-machine-learning [Last accessed on 11 Jun 2024].

63. Deng L, Yu D. Deep learning: methods and applications. FNT Sign Process 2014;7:197-387.

64. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44.

65. Liu S, Xu H, Liu D, et al. Identify the activity origin of Pt single-atom catalyst via atom-by-atom counting. J Am Chem Soc 2021;143:15243-9.

66. Liu S, Xu C, Zhang Z, Zhao Q, Yao L, Liu W. Precisely identify the geometry of catalyst particles from S/TEM images via a boundary attention deep learning network. Mater Today Commun 2021;28:102728.

67. Vendelbo SB, Elkjær CF, Falsig H, et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater 2014;13:884-90.

68. Ghosh T, Arce-Ramos JM, Li WQ, et al. Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction. Nat Commun 2022;13:6176.

69. Miller BK, Crozier PA. Linking changes in reaction kinetics and atomic-level surface structures on a supported Ru catalyst for CO oxidation. ACS Catal 2021;11:1456-63.

70. Zhou Y, Li M, Zhang T, et al. Cooperative characterization of in situ TEM and cantilever-TGA to optimize calcination conditions of MnO2 nanowire precursors. Nano Lett 2023;23:2412-20.

71. Wang Y, Zhang F, Wang M, et al. Discerning the contributions of gold species in butadiene hydrogenation: from single atoms to nanoparticles. Angew Chem Int Ed 2022;61:e202214166.

72. Omme JT, Zakhozheva M, Spruit RG, Sholkina M, Pérez Garza HH. Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability. Ultramicroscopy 2018;192:14-20.

73. Zhang F, Zhang X, Jia Z, Liu W. Precise drift tracking for in situ transmission electron microscopy via a thon-ring based sample position measurement. Microsc Microanal 2022;28:1945-51.

74. Huang X, Jones T, Fedorov A, et al. Phase coexistence and structural dynamics of redox metal catalysts revealed by operando TEM. Adv Mater 2021;33:e2101772.

75. Chen Q, Dwyer C, Sheng G, et al. Imaging beam-sensitive materials by electron microscopy. Adv Mater 2020;32:e1907619.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/