REFERENCES
1. Kumar A, Daw P, Milstein D. Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem Rev 2022;122:385-441.
2. Ganguly S, Paul S, Khurana D, et al. Ternary Ni-Co-Se nanostructure for electrocatalytic oxidative value addition of biomass platform chemicals. ACS Appl Energy Mater 2023;6:5331-41.
3. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294-303.
5. Morais AR, da Costa Lopes AM, Bogel-Łukasik R. Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 2015;115:3-27.
6. Climent MJ, Corma A, Iborra S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem 2011;13:520.
7. Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation strategies for the preparation of high-performance catalysts for urea oxidation reaction and their applications. Small 2023;19:e2301130.
8. Zhao G, Rui K, Dou SX, Sun W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 2018;28:1803291.
9. Wei J, Zhou M, Long A, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett 2018;10:75.
10. Yu W, Gao Y, Chen Z, Zhao Y, Wu Z, Wang L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin J Catal 2021;42:1876-902.
11. Zhu B, Liang Z, Zou R. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020;16:e1906133.
12. Jacobson MZ. Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2009;2:148-73.
13. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 2021;33:e2007100.
14. Qin Y, Cao H, Liu Q, et al. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting. Front Chem Sci Eng 2024;18:6.
15. Liu W, Que W, Yin R, et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl Catal B Environ 2023;328:122488.
16. Li W, Liu K, Feng S, et al. Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J Colloid Interface Sci 2024;655:726-35.
17. Ding J, Yang H, Zhang H, et al. Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. Int J Hydrog Energy 2023;53:318-24.
18. Liu W, Niu X, Tang J, et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem Synth 2023;3:44.
19. Guo L, Wang J, Teng X, Liu Y, He X, Chen Z. A novel bimetallic nickel-molybdenum carbide nanowire array for efficient hydrogen evolution. ChemSusChem 2018;11:2717-23.
20. Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci 2018;5:1700464.
21. Ji Y, Yu Z, Yan L, Song W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci Technol 2023;29:100-7.
22. Nicita A, Maggio G, Andaloro A, Squadrito G. Green hydrogen as feedstock: financial analysis of a photovoltaic-powered electrolysis plant. Int J Hydrogen Energ 2020;45:11395-408.
23. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015;44:5148-80.
24. Lagadec MF, Grimaud A. Water electrolysers with closed and open electrochemical systems. Nat Mater 2020;19:1140-50.
25. Liu X, Guo R, Ni K, et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv Mater 2020;32:e2001136.
26. Wang C, Lu H, Mao Z, Yan C, Shen G, Wang X. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv Funct Mater 2020;30:2000556.
27. Zhou L, Shao M, Zhang C, et al. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Adv Mater 2017;29:1604080.
28. Tao HB, Xu Y, Huang X, et al. A General method to probe oxygen evolution intermediates at operating conditions. Joule 2019;3:1498-509.
29. Huang H, Yu C, Han X, et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm-2. Energy Environ Sci 2020;13:4990-9.
30. Lie WH, Yang Y, Yuwono JA, et al. Identification of catalytic activity descriptors for selective 5-hydroxymethyl furfural electrooxidation to 2,5-furandicarboxylic acid. J Mater Chem A 2023;11:5527-39.
31. Mondal B, Karjule N, Singh C, et al. Unraveling the mechanisms of electrocatalytic oxygenation and dehydrogenation of organic molecules to value-added chemicals over a Ni-Fe oxide catalyst. Adv Energy Mater 2021;11:2101858.
32. Chen Y, Tian B, Cheng Z, et al. Electro-descriptors for the performance prediction of electro-organic synthesis. Angew Chem Int Ed 2021;60:4199-207.
33. Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sust Energ Rev 2018;87:1-21.
34. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 2018;47:8349-402.
35. Venkata Mohan S, Nikhil GN, Chiranjeevi P, et al. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 2016;215:2-12.
36. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2020;49:4273-306.
37. Verdeguer P, Merat N, Gaset A. Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J Mol Catal 1993;85:327-44.
38. Hu L, He A, Liu X, et al. Biocatalytic Transformation of 5-hydroxymethylfurfural into high-value derivatives: recent advances and future aspects. ACS Sustain Chem Eng 2018;6:15915-35.
39. Tong X, Ma Y, Li Y. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A Gen 2010;385:1-13.
40. Payne KAP, Marshall SA, Fisher K, et al. Enzymatic carboxylation of 2-furoic acid yields 2,5-furandicarboxylic acid (FDCA). ACS Catal 2019;9:2854-65.
41. Eerhart AJJE, Faaij APC, Patel MK. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 2012;5:6407.
42. Zhang H, Qi G, Liu W, et al. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution. Inorg Chem Front 2023;10:2423-9.
43. Xu Y, Jia X, Ma J, et al. Efficient synthesis of 2,5-dicyanofuran from biomass-derived 2,5-diformylfuran via an oximation-dehydration strategy. ACS Sustain Chem Eng 2018;6:2888-92.
44. Zhang C, Xu H, Wang Y, et al. Reduction of 4-nitrophenol with nano-gold@graphene composite porous material. China Powder Sci Technol 2023;29:80-93.
45. Yang Y, Mu T. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chem 2021;23:4228-54.
46. Ma C, Fang P, Mei T. Recent advances in C-H functionalization using electrochemical transition metal catalysis. ACS Catal 2018;8:7179-89.
47. Giannakoudakis DA, Colmenares JC, Tsiplakides D, Triantafyllidis KS. Nanoengineered electrodes for biomass-derived 5-hydroxymethylfurfural electrocatalytic oxidation to 2,5-furandicarboxylic acid. ACS Sustain Chem Eng 2021;9:1970-93.
48. Zhou H, Li Z, Ma L, Duan H. Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chem Commun 2022;58:897-907.
49. Yang M, Meng G, Li H, et al. Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. J Colloid Interface Sci 2023;652:155-63.
50. Huang X, Song J, Hua M, et al. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chem 2020;22:843-9.
51. Wei T, Liu W, Zhang S, Liu Q, Luo J, Liu X. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem Commun 2023;59:442-5.
52. Grabowski G, Lewkowski J, Skowroński R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochim Acta 1991;36:1995.
53. Liu W, Cui Y, Du X, Zhang Z, Chao Z, Deng Y. High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ Sci 2016;9:467-72.
54. Zhang B, Fu H, Mu T. Hierarchical NiSx/Ni2P nanotube arrays with abundant interfaces for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural. Green Chem 2022;24:877-84.
55. Yang G, Jiao Y, Yan H, et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater 2020;32:e2000455.
56. Wang D, Chen C, Wang S. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci China Chem 2023;66:1052-72.
57. Vuyyuru KR, Strasser P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today 2012;195:144-54.
58. Cha HG, Choi KS. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem 2015;7:328-33.
59. Lu Y, Dong CL, Huang YC, et al. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew Chem Int Ed 2020;59:19215-21.
60. Lu Y, Liu T, Dong CL, et al. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv Mater 2021;33:e2007056.
61. Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG. Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media. Appl Catal B Environ 2019;242:85-91.
62. Lu Y, Dong C, Huang Y, et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci China Chem 2020;63:980-6.
63. Zhang N, Zou Y, Tao L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew Chem Int Ed 2019;58:15895-903.
64. Wang H, Li C, An J, Zhuang Y, Tao S. Surface reconstruction of NiCoP for enhanced biomass upgrading. J Mater Chem A 2021;9:18421-30.
65. Barwe S, Weidner J, Cychy S, et al. Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride. Angew Chem Int Ed 2018;57:11460-4.
66. You B, Jiang N, Liu X, Sun Y. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew Chem Int Ed 2016;55:9913-7.
67. Holzhäuser FJ, Janke T, Öztas F, Broicher C, Palkovits R. Electrocatalytic oxidation of 5-hydroxymethylfurfural into the monomer 2,5-furandicarboxylic acid using mesostructured nickel oxide. Adv Sustain Syst 2020;4:1900151.
68. Guo M, Lu X, Xiong J, Zhang R, Li X, et al. Alloy-driven efficient electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural towards 2,5-furandicarboxylic acid: a review. ChemSusChem 2022;17:e202201074.
69. Zhao Y, Cai M, Xian J, Sun Y, Li G. Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. J Mater Chem A 2021;9:20164-83.
70. Sun Y, Wang J, Qi Y, Li W, Wang C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: promising for H2 production under industrial-level current density. Adv Sci 2022;9:e2200957.
71. An L, Zhao X, Zhao T, Wang D. Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy Environ Sci 2021;14:2620-38.
72. Li F, Bu Y, Lv Z, et al. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst. Small 2017;13:40.
73. Zhao Y, Dongfang N, Triana CA, et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ Sci 2022;15:727-39.
74. Chen D, Chen Z, Zhang X, et al. Exploring single atom catalysts of transition-metal doped phosphorus carbide monolayer for HER: a first-principles study. J Energy Chem 2021;52:155-62.
75. Fei B, Chen Z, Liu J, et al. Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv Energy Mater 2020;10:2001963.
76. Jin C, Zhai P, Wei Y, et al. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small 2021;17:e2102097.
77. Zhang L, Gao X, Zhu Y, et al. Electrocatalytically inactive copper improves the water adsorption/dissociation on Ni3S2 for accelerated alkaline and neutral hydrogen evolution. Nanoscale 2021;13:2456-64.
78. Cai M, Zhang Y, Zhao Y, Liu Q, Li Y, Li G. Two-dimensional metal-organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization. J Mater Chem A 2020;8:20386-92.
79. Xie S, Fu H, Chen L, Li Y, Shen K. Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production. Sci China Chem 2023;66:2141-52.
80. Li J, Mao X, Gong W, et al. Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Res 2023;16:6728-35.
81. Gao P, Chen Z, Gong Y, et al. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater 2020;10:1903780.
82. Liu X, Zhang L, Zheng Y, et al. Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv Sci 2019;6:1801898.
83. Liu G, Li J, Fu J, et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv Mater 2019;31:e1806761.
84. Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe-OOH catalysts. ACS Energy Lett 2018;3:1515-20.
85. Sun J, Guo N, Shao Z, et al. A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv Energy Mater 2018;8:1800980.
86. Ma L, Chen S, Pei Z, et al. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018;12:8597-605.
87. Zhou D, Xiong X, Cai Z, et al. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2018;2:1800083.
88. Lu Y, Li C, Zhang Y, et al. Engineering of cation and anion vacancies in Co3O4 thin nanosheets by laser irradiation for more advancement of oxygen evolution reaction. Nano Energy 2021;83:105800.
89. He J, Zhou X, Xu P, Sun J. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy 2021;80:105540.
90. Wang H, Zhang J, Tao S. Nickel oxide nanoparticles with oxygen vacancies for boosting biomass-upgrading. Chem Eng J 2022;444:136693.
91. Zhang B, Yang Z, Yan C, Xue Z, Mu T. Operando forming of lattice vacancy defect in ultrathin crumpled NiVW-layered metal hydroxides nanosheets for valorization of biomass. Small 2023;19:e2207236.
92. Qi Y, Wang K, Sun Y, Wang J, Wang C. Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Sustain Chem Eng 2022;10:645-54.
93. Tao L, Wang Y, Zou Y, et al. Charge transfer modulated activity of carbon-based electrocatalysts. Adv Energy Mater 2020;10:1901227.
94. Zhang J, Zhang Q, Feng X. Support and interface effects in water-splitting electrocatalysts. Adv Mater 2019;31:e1808167.
95. Sun X, Yuan K, Zhou J, Yuan C, Liu H, Zhang Y. Au3+ species-induced interfacial activation enhances metal-support interactions for boosting electrocatalytic CO2 reduction to CO. ACS Catal 2022;12:923-34.
96. Pang X, Zhao H, Huang Y, Luo B, Bai H, Fan W. Electrochemically induced NiOOH/Ag+ active species for efficient oxidation of 5-hydroxymethylfurfural. Appl Surf Sci 2023;608:155152.
97. Cheng Z, Xiao Y, Wu W, et al. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021;15:11417-27.
98. Yan C, Huang J, Sun K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy 2018;3:764-72.
99. Jiang W, Zong X, An L, et al. Consciously constructing heterojunction or direct z-scheme photocatalysts by regulating electron flow direction. ACS Catal 2018;8:2209-17.
100. Ma J, Su J, Lin Z, et al. Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells. Nano Energy 2020;67:104241.
101. Wang F, Yang H, Zhang H, et al. One-pot synthesis enables magnetic coupled Cr2Te3/MnTe/Cr2Te3 integrated heterojunction nanorods. Nano Lett 2021;21:7684-90.
102. Chen S, Qi G, Yin R, et al. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale 2023;15:19577-85.
103. Xie Y, Sun L, Pan X, Zhou Z, Zhao G. Selective two-electron electrocatalytic conversion of 5-Hydroxymethylfurfural boosting hydrogen production under neutral condition over Co(OH)2-CeO2 catalyst. Appl Catal B Environ 2023;338:123068.
104. Wang H, Zhou Y, Tao S. CoP-CoOOH heterojunction with modulating interfacial electronic structure: a robust biomass-upgrading electrocatalyst. Appl Catal B Environ 2022;315:121588.
105. Guo J, Wang G, Cui S, et al. Enhanced adsorption with hydroxymethyl and aldehyde over the heterophase interface for efficient biomass electrooxidation. Sci China Mater 2023;66:2698-707.
106. Qin Y, Han X, Li Y, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal 2020;10:5973-8.
107. Qin Y, Wang B, Qiu Y, et al. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chem Commun 2021;57:2752-5.
108. Zhao Z, Guo T, Luo X, et al. Bimetallic sites and coordination effects: electronic structure engineering of NiCo-based sulfide for 5-hydroxymethylfurfural electrooxidation. Catal Sci Technol 2022;12:3817-25.
109. Yan Y, Li K, Zhao J, Cai W, Yang Y, Lee J. Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran. Appl Catal B Environ 2017;207:358-65.
110. Zhang M, Liu Y, Liu B, Chen Z, Xu H, Yan K. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. ACS Catal 2020;10:5179-89.
111. Gao L, Liu Z, Ma J, et al. NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Appl Catal B Environ 2020;261:118235.
112. Deng X, Kang X, Li M, et al. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core-shell nanoarray electrocatalysts. J Mater Chem A 2020;8:1138-46.
113. Jadhav HS, Roy A, Chung W, Seo JG. Free standing growth of MnCo2O4 nanoflakes as an electrocatalyst for methanol electro-oxidation. New J Chem 2017;41:15058-63.
114. Gao L, Bao Y, Gan S, et al. Hierarchical nickel-cobalt-based transition metal oxide catalysts for the electrochemical conversion of biomass into valuable chemicals. ChemSusChem 2018;11:2547-53.
115. Yuan C, Hui KS, Yin H, et al. Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting. ACS Materials Lett 2021;3:752-80.
116. Feng J, Zheng D, Yin R, et al. A wide-temperature adaptive aqueous zinc-air battery-based on Cu-Co dual metal-nitrogen-carbon/nanoparticle electrocatalysts. Small Struct 2023;4:2200340.
117. Zhang G, Wang G, Wan Y, Liu X, Chu K. Ampere-level nitrate electroreduction to ammonia over monodispersed Bi-Doped FeS2. ACS Nano 2023;17:21328-36.
118. Le T, Vo T, Chiang C. Highly efficient amorphous binary cobalt-cerium metal oxides for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. J Catal 2021;404:560-9.
119. Liu W, Dang L, Xu Z, Yu H, Jin S, Huber GW. Electrochemical Oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal 2018;8:5533-41.
120. Yang M, Wei T, He J, et al. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res 2024;17:1209-16.