REFERENCES

1. Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change 2015;5:329-32.

2. Ziegler MS, Trancik JE. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ Sci 2021;14:1635-51.

3. Hundekar P, Jain R, Lakhnot AS, Koratkar N. Recent advances in the mitigation of dendrites in lithium-metal batteries. J Appl Phys 2020;128:010903.

4. Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem Mater 2010;22:691-714.

5. Lotfabad EM, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014;8:7115-29.

6. Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater 2010;22:E28-62.

7. Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 2013;135:15966-9.

8. Wang Q, Huang Y, Miao J, Zhao Y, Wang Y. Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochim Acta 2013;93:120-30.

9. Fu X, Zhou Y, Huang J, et al. Rethinking the electrode multiscale microstructures: a review on structuring strategies toward battery manufacturing genome. Adv Energy Mater 2023;13:2301385.

10. Lu X, Zhang X, Tan C, et al. Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance. Energy Environ Sci 2021;14:5929-46.

11. Lee HJ, Liu X, Chart Y, et al. LiNi0.5Mn1.5O4 cathode microstructure for all-solid-state batteries. Nano Lett 2022;22:7477-83.

12. Li J, Liang X, Liou F, Park J. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Sci Rep 2018;8:1846.

13. Feng Z, Peng W, Wang Z, et al. Review of silicon-based alloys for lithium-ion battery anodes. Int J Miner Metall Mater 2021;28:1549-64.

14. Vernardou D. Recent report on the hydrothermal growth of LiFePO4 as a cathode material. Coatings 2022;12:1543.

15. Wang X, Zhang C, Sawczyk M, et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat Mater 2022;21:1057-65.

16. Wang Y, Wu Z, Azad FM, et al. Fluorination in advanced battery design. Nat Rev Mater 2024;9:119-33.

17. Pam ME, Yan D, Yu J, et al. Microstructural engineering of cathode materials for advanced zinc-ion aqueous batteries. Adv Sci 2020;8:2002722.

18. Lin L, Zhang L, Wang S, Kang F, Li B. Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. J Mater Chem A 2023;11:7867-97.

19. Reddy MV, Subba Rao GV, Chowdari BV. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 2013;113:5364-457.

20. Mahmood N, Tang T, Hou Y. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 2016;6:1600374.

21. Yuan C, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 2014;53:1488-504.

22. Chen G, Yan L, Luo H, Guo S. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv Mater 2016;28:7580-602.

23. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000;407:496-9.

24. Zhu Z, Kushima A, Yin Z, et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat Energy 2016;1:16111.

25. Cai W, Li G, Zhang K, et al. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv Funct Mater 2018;28:1704865.

26. Roland A, Fullenwarth J, Ledeuil J, Martinez H, Louvain N, Monconduit L. How carbon coating or continuous carbon pitch matrix influence the silicon electrode/electrolyte interfaces and the performance in Li-ion batteries. Battery Energy 2022;1:20210009.

27. Kim H, Seo M, Park MH, Cho J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 2010;49:2146-9.

28. Abdelhamid AA, Yang X, Yang J, Chen X, Ying JY. Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 2016;26:425-37.

29. Zhu C, Usiskin RE, Yu Y, Maier J. The nanoscale circuitry of battery electrodes. Science 2017;358:eaao2808.

30. Lu Y, Yu L, Lou XW. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018;4:972-96.

31. Mai L, Sheng J, Xu L, Tan S, Meng J. One-dimensional hetero-nanostructures for rechargeable batteries. ACC Chem Res 2018;51:950-9.

32. Zhang X, Shyy W, Marie Sastry A. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 2007;154:A910.

33. Wu Y, Yao Y, Wang L, Yu Y. Recent progress on modification strategies of alloy-based anode materials for alkali-ion batteries. Chem Res Chin Univ 2021;37:200-9.

34. Li GA, Wang CY, Chang WC, Tuan HY. Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries. ACS Nano 2016;10:8632-44.

35. Kennedy T, Mullane E, Geaney H, Osiak M, O’Dwyer C, Ryan KM. High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 2014;14:716-23.

36. Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 2015;15:2740-5.

37. Liu W, Lee SW, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2017;2:17035.

38. Lei D, Benson J, Magasinski A, Berdichevsky G, Yushin G. Transformation of bulk alloys to oxide nanowires. Science 2017;355:267-71.

39. Cong L, Xie H, Li J. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv Energy Mater 2017;7:1601906.

40. Liu B, Zhang J, Shen G. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today 2016;11:82-97.

41. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science 2019;366:eaan8285.

42. Rojaee R, Shahbazian-Yassar R. Two-dimensional materials to address the lithium battery challenges. ACS Nano 2020;14:2628-58.

43. Zhao D, Feng Y, Wang Y, Xia Y. Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 2013;88:632-8.

44. Zhao Y, Peng L, Liu B, Yu G. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 2014;14:2849-53.

45. Casimir A, Zhang H, Ogoke O, Amine JC, Lu J, Wu G. Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 2016;27:359-76.

46. Zhou G, Wang D, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 2010;22:5306-13.

47. Li S, Wang B, Li B, Liu J, Yu M, Wu X. Self-assembly of 2D sandwich-structured MnFe2O4/graphene composites for high-performance lithium storage. Mater Res Bull 2015;61:369-74.

48. Wang B, Li X, Zhang X, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013;7:1437-45.

49. Agyeman DA, Song K, Lee G, Park M, Kang Y. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv Energy Mater 2016;6:1600904.

50. Wu P, Wang H, Tang Y, Zhou Y, Lu T. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities. ACS Appl Mater Interfaces 2014;6:3546-52.

51. Zhang L, Wu HB, Lou XW. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 2014;4:1300958.

52. Yu L, Hu H, Wu HB, Lou XW. Complex hollow nanostructures: synthesis and energy-related applications. Adv Mater 2017;29:1604563.

53. Shi Y, Hua C, Li B, et al. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Funct Mater 2013;23:1832-8.

54. Zhao J, Yan G, Hu Z, Zhang X, Shi J, Jiang X. Triazine-based porous organic polymers with enhanced electronegativity as multifunctional separator coatings in lithium-sulfur batteries. Nanoscale 2021;13:12028-37.

55. Sun M, Ji H, Guan Y, et al. Nanoscale melamine-based porous organic frameworks as host material for efficient polysulfides chemisorption in lithium-sulfur batteries. Nanotechnology 2021;32:085402.

56. Je SH, Kim HJ, Kim J, Choi JW, Coskun A. Perfluoroaryl-elemental sulfur SNAr chemistry in covalent triazine frameworks with high sulfur contents for lithium-sulfur batteries. Adv Funct Mater 2017;27:1703947.

57. Kim J, Elabd A, Chung S, Coskun A, Choi JW. Covalent triazine frameworks incorporating charged polypyrrole channels for high-performance lithium-sulfur batteries. Chem Mater 2020;32:4185-93.

58. Liu J, Li H, Wang J, et al. Design zwitterionic amorphous conjugated micro-/mesoporous polymer assembled nanotentacle as highly efficient sulfur electrocatalyst for lithium-sulfur batteries. Adv Energy Mater 2021;11:2101926.

59. Trogadas P, Ramani V, Strasser P, Fuller TF, Coppens MO. Hierarchically structured nanomaterials for electrochemical energy conversion. Angew Chem Int Ed 2016;55:122-48.

60. Fuchigami T, Yamamoto H, Tanibata N, Nakayama M, Kakimoto K. Growth mechanism of spiky Nb2O5 nanoparticles and their electrochemical property. Phys Status Solidi 2022;259:2100642.

61. Xing Y, Wang S, Fang B, Song G, Wilkinson DP, Zhang S. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J Power Sources 2018;385:10-7.

62. Zhang L, Shen L, Liu Y, Suo G. Urchin-like MnO/C microspheres as high-performance lithium-ion battery anode. Ionics 2021;27:1423-8.

63. Liu J, Wang M, Wang Q, et al. Sea urchin-like Si@MnO2@rGO as anodes for high-performance lithium-ion batteries. Nanomaterials 2022;12:285.

64. Zou Y, Wang Y. Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem Eng J 2013;229:183-9.

65. Bhosale SV, Al Kobaisi M, Jadhav RW, Jones LA. Flower-like superstructures: structural features, applications and future perspectives. Chem Rec 2021;21:257-83.

66. Hao Q, Cui G, Zhao Y, Bakenov Z. Flower-like MoSe2/MoO2 composite with high capacity and long-term stability for lithium-ion battery. Nanomaterials 2019;9:1256.

67. Chen X, Zhang H, Yan P, Cao X, Zhan C, Liu J. Flower-like metal oxide composite as an efficient sulfur host for stable and high-capacity lithium-sulfur batteries. J Solid State Chem 2022;314:123430.

68. Pan J, Sun C, Liu J, et al. One-step synthesis method of flower-like Si@NiO/rGO composites as high-performance anode for lithium-ion batteries. J Alloys Compd 2023;947:169506.

69. Wang X, Feng J, Bai Y, Zhang Q, Yin Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 2016;116:10983-1060.

70. Wang Z, Zhou L, Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 2012;24:1903-11.

71. Ma FX, Hu H, Wu HB, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 2015;27:4097-101.

72. Zhang G, Xia BY, Xiao C, et al. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed 2013;52:8643-7.

73. Yu L, Guan B, Xiao W, Lou XW. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 2015;5:1500981.

74. Zhang G, Lou XW. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew Chem Int Ed 2014;53:9041-4.

75. Wu LL, Wang Z, Long Y, et al. Multishelled NixCo3-xO4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries. Small 2017;13:1604270.

76. Wang J, Yang N, Tang H, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed 2013;52:6417-20.

77. Zhang X, Song X, Gao S, et al. Facile synthesis of yolk-shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode. J Mater Chem A 2013;1:6858.

78. Ko YN, Choi SH, Park SB, Kang YC. Preparation of yolk-shell and filled Co9S8 microspheres and comparison of their electrochemical properties. Chem Asian J 2014;9:572-6.

79. Lu Y, Yu L, Wu M, Wang Y, Lou XWD. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv Mater 2018;30:1702875.

80. Qi J, Lai X, Wang J, et al. Multi-shelled hollow micro-/nanostructures. Chem Soc Rev 2015;44:6749-73.

81. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 2008;47:2930-46.

82. Ma Y, Bi R, Yang M, et al. Hollow multishelled structural ZnO fillers enhance the ionic conductivity of polymer electrolyte for lithium batteries. J Nanopart Res 2023;25:14.

83. Liu J, Zhou Y, Wang J, Pan Y, Xue D. Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem Commun 2011;47:10380-2.

84. Lou XW, Li CM, Archer LA. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 2009;21:2536-9.

85. Wang X, Wu X, Guo Y, et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 2010;20:1680-6.

86. Zhong J, Cao C, Liu Y, Li Y, Khan WS. Hollow core-shell eta-Fe2O3 microspheres with excellent lithium-storage and gas-sensing properties. Chem Commun 2010;46:3869-71.

87. Shen L, Yu L, Yu XY, Zhang X, Lou XW. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 2015;54:1868-72.

88. Li Y, Yan K, Lee H, Lu Z, Liu N, Cui Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energy 2016;1:15029.

89. Jin Y, Li S, Kushima A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci 2017;10:580-92.

90. Lu S, Sun Y, Xu Y, Guo S, Cao A, Wan L. Hollow-structured electrode materials: self-templated synthesis and their potential in secondary batteries. ChemNanoMat 2020;6:1298-314.

91. Wu H, Li Y, Ren J, et al. CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 2019;55:82-92.

92. Song Z, Jiang W, Jian X, Hu F. Advanced nanostructured materials for electrocatalysis in lithium-sulfur batteries. Nanomaterials 2022;12:4341.

93. Wang F, Zuo Z, Li L, He F, Li Y. Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy 2020;68:104307.

94. Gu Y, You EM, Lin JD, et al. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Nat Commun 2023;14:3536.

95. Abdelhamid AA, Mendoza-garcia A, Ying JY. Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy 2022;93:106860.

96. Huang J, Guo X, Du X, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci 2019;12:1550-7.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/