REFERENCES

1. Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018;71-2:51-69.

2. Catalano E. Biophysical and biomechanical properties of cartilage. arXiv 2023.

3. Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 2011;25:815-23.

4. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 2020;29-30:100587.

5. Nordberg RC, Otarola GA, Wang D, Hu JC, Athanasiou KA. Navigating regulatory pathways for translation of biologic cartilage repair products. Sci Transl Med 2022;14:eabp8163.

6. van Middelkoop M, Arden NK, Atchia I, et al. The OA trial bank: meta-analysis of individual patient data from knee and hip osteoarthritis trials show that patients with severe pain exhibit greater benefit from intra-articular glucocorticoids. Osteoarthritis Cartilage 2016;24:1143-52.

7. Mcalindon TE, Lavalley MP, Harvey WF, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 2017;317:1967-75.

8. Block JA. Osteoarthritis: OA guidelines: improving care or merely codifying practice? Nat Rev Rheumatol 2014;10:324-6.

9. Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol 2014;10:11-22.

10. Yasui Y, Wollstein A, Murawski CD, Kennedy JG. Operative treatment for osteochondral lesions of the talus: biologics and scaffold-based therapy. Cartilage 2017;8:42-9.

11. Zelinka A, Roelofs AJ, Kandel RA, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage 2022;30:1547-60.

12. Redondo ML, Beer AJ, Yanke AB. Cartilage restoration: microfracture and osteochondral autograft transplantation. J Knee Surg 2018;31:231-8.

13. Pareek A, Reardon PJ, Maak TG, Levy BA, Stuart MJ, Krych AJ. Long-term outcomes after osteochondral autograft transfer: a systematic review at mean follow-up of 10.2 years. Arthroscopy 2016;32:1174-84.

14. Inderhaug E, Solheim E. Osteochondral autograft transplant (mosaicplasty) for knee articular cartilage defects. JBJS Essent Surg Tech 2019;9:e34.1-2.

15. Krych AJ, Saris DBF, Stuart MJ, Hacken B. Cartilage Injury in the knee: assessment and treatment options. J Am Acad Orthop Surg 2020;28:914-22.

16. Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022;10:17.

17. Jin X, Shan J, Zhao J, et al. Bimetallic oxide Cu-Fe3O4 nanoclusters with multiple enzymatic activities for wound infection treatment and wound healing. Acta Biomater 2024;173:403-19.

18. Malta MD, Cerqueira MT, Marques AP. Extracellular matrix in skin diseases: the road to new therapies. J Adv Res 2023;51:149-60.

19. Pfisterer K, Shaw LE, Symmank D, Weninger W. The extracellular matrix in skin inflammation and infection. Front Cell Dev Biol 2021;9:682414.

20. Bouten CVC, Cheng C, Vermue IM, Gawlitta D, Passier R. Cardiovascular tissue engineering and regeneration: a plead for further knowledge convergence. Tissue Eng Part A 2022;28:525-41.

21. Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 2020;11:757.

22. Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 2015;65:20-31.

23. Mansour A, Mezour MA, Badran Z, Tamimi F. *Extracellular matrices for bone regeneration: a literature review. Tissue Eng Part A 2017;23:1436-51.

24. Hao Y, Cao B, Deng L, et al. The first 3D-bioprinted personalized active bone to repair bone defects: a case report. Int J Biopaintion 2022;9:654.

25. Deng C, Yang J, He H, et al. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater Sci 2021;9:4891-903.

26. Liu G, Guo Q, Liu C, et al. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration. Acta Biomater 2023;169:317-33.

27. Ruan J, Yu Q, Cui H, et al. A smart ROS/NIR dual-responsive melanin delivery platform for photoacoustic imaging-guided osteoarthritis therapy. Appl Mater Today 2021;25:101216.

28. Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science 2017;356:1026-30.

29. Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 2015;21:815-9.

30. Knipper JA, Ding X, Eming SA. Diabetes impedes the epigenetic switch of macrophages into repair mode. Immunity 2019;51:199-201.

31. Yang S, Kim J, Ryu JH, et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 2010;16:687-93.

32. Loeser RF. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 2006;54:1357-60.

33. Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev 2019;4:221-9.

34. Jayasuriya CT, Chen Y, Liu W, Chen Q. The influence of tissue microenvironment on stem cell-based cartilage repair. Ann N Y Acad Sci 2016;1383:21-33.

35. Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022;140:23-42.

36. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012;338:917-21.

37. Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O'Keefe RJ. Articular cartilage biology. J Am Acad Orthop Surg 2003;11:421-30.

38. van der Kraan PM. The interaction between joint inflammation and cartilage repair. Tissue Eng Regen Med 2019;16:327-34.

39. Zhang S, Hu B, Liu W, et al. Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin Arthritis Rheu 2020;50:198-208.

40. Zhang H, Wang L, Cui J, et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci Adv 2023;9:eabo7868.

41. Monteagudo S, Lories RJ. Cushioning the cartilage: a canonical Wnt restricting matter. Nat Rev Rheumatol 2017;13:670-81.

42. Xu W, Wang W, Liu D, Liao D. Roles of cartilage-resident stem/progenitor cells in cartilage physiology, development, repair and osteoarthritis. Cells 2022;11:2305.

43. Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 2015;11:35-44.

44. Qi K, Li N, Zhang Z, Melino G. Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2018;326:86-93.

45. Xiong Y, Mi BB, Lin Z, et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022;9:65.

46. Wu Y, Li J, Zeng Y, et al. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022;14:40.

47. Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage 2022;30:207-15.

48. Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022;140:23-42.

49. Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 1988;175:266-76.

50. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504-8.

51. Li R, Qi H, Ma Y, et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun 2020;11:3207.

52. Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021;66:101249.

53. Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 2011;7:161-9.

54. Terkeltaub R, Johnson K, Murphy A, Ghosh S. Invited review: the mitochondrion in osteoarthritis. Mitochondrion 2002;1:301-19.

55. Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019;132:73-82.

56. Liang Q, Wang XP, Chen TS. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS. Apoptosis 2014;19:1354-63.

57. Lee HG, Yang JH. PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways. Osteoarthritis Cartilage 2012;20:1179-85.

58. Gao Y, Liu S, Huang J, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int 2014;2014:648459.

59. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 2020;5:351-70.

60. Smith LR, Cho S, Discher DE. Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology 2018;33:16-25.

61. Viswanathan P, Ondeck MG, Chirasatitsin S, et al. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials 2015;52:140-7.

62. Kreeger PK, Strong LE, Masters KS. Engineering approaches to study cellular decision making. Annu Rev Biomed Eng 2018;20:49-72.

63. Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015;84:1-29.

64. Chen T, Bai J, Tian J, Huang P, Zheng H, Wang J. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Colloids Surf B Biointerfaces 2018;167:354-63.

65. Wang Z, Cao W, Wu F, et al. A triphasic biomimetic BMSC-loaded scaffold for osteochondral integrated regeneration in rabbits and pigs. Biomater Sci 2023;11:2924-34.

66. Cao R, Zhan A, Ci Z, et al. A biomimetic biphasic scaffold consisting of decellularized cartilage and decalcified bone matrixes for osteochondral defect repair. Front Cell Dev Biol 2021;9:639006.

67. Chen P, Tao J, Zhu S, et al. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials 2015;39:114-23.

68. Peng Y, Zhuang Y, Liu Y, et al. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration 2023;3:20210043.

69. Zhang W, Lian Q, Li D, et al. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C Mater Biol Appl 2015;46:10-5.

70. Harris JD, Siston R, Brophy R, Lattermann C, Carey J, Flanigan D. Failures, re-operations, and complications after autologous chondrocyte implantation-a systematic review. Osteoarthritis Cartilage 2011;19:779-91.

71. Xu N, Lu D, Qiang L, et al. 3D-printed composite bioceramic scaffolds for bone and cartilage integrated regeneration. ACS Omega 2023;8:37918-26.

72. Deng C, Zhu H, Li J, et al. Bioactive scaffolds for regeneration of cartilage and subchondral bone interface. Theranostics 2018;8:1940-55.

73. Cao R, Xu Y, Xu Y, et al. Development of Tri-layered biomimetic atelocollagen scaffolds with interfaces for osteochondral tissue engineering. Adv Healthc Mater 2022;11:e2101643.

74. Khetan S, Burdick JA. Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 2011;7:830-8.

75. Woodfield TB, Moroni L, Malda J. Combinatorial approaches to controlling cell behaviour and tissue formation in 3D via rapid-prototyping and smart scaffold design. Comb Chem High Throughput Screen 2009;12:562-79.

76. Lin S, Sangaj N, Razafiarison T, Zhang C, Varghese S. Influence of physical properties of biomaterials on cellular behavior. Pharm Res 2011;28:1422-30.

77. Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 2013;101:2424-35.

78. Wang C, Chen B, Wang W, et al. Strontium released bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative environment for osteochondral regeneration. Mater Sci Eng C Mater Biol Appl 2019;103:109833.

79. Lin R, Deng C, Li X, et al. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics 2019;9:6300-13.

80. Xing M, Jiang Y, Bi W, et al. Strontium ions protect hearts against myocardial ischemia/reperfusion injury. Sci Adv 2021;7:eabe0726.

81. Li Y, Chen M, Yan J, et al. Tannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta Biomater 2021;126:119-31.

82. Pan Z, Duan P, Liu X, et al. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater 2015;2:9-19.

83. Li J, Xu T, Hou W, et al. The response of host blood vessels to graded distribution of macro-pores size in the process of ectopic osteogenesis. Mater Sci Eng C Mater Biol Appl 2020;109:110641.

84. Melica ME, La Regina G, Parri M, Peired AJ, Romagnani P, Lasagni L. Substrate stiffness modulates renal progenitor cell properties via a ROCK-mediated mechanotransduction mechanism. Cells 2019;8:1561.

85. Rufaihah AJ, Cheyyatraivendran S, Mazlan MDM, et al. The effect of scaffold modulus on the morphology and remodeling of fetal mesenchymal stem cells. Front Physiol 2018;9:1555.

86. Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O'Brien FJ. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 2012;11:53-62.

87. Hong Y, Han Y, Wu J, et al. Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics 2020;10:5565-77.

88. Przekora A. Current Trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int J Mol Sci 2019;20:435.

89. Malinauskas M, Jankauskaite L, Aukstikalne L, et al. Cartilage regeneration using improved surface electrospun bilayer polycaprolactone scaffolds loaded with transforming growth factor-beta 3 and rabbit muscle-derived stem cells. Front Bioeng Biotechnol 2022;10:971294.

90. Zhou S, Bei Z, Wei J, et al. Mussel-inspired injectable chitosan hydrogel modified with catechol for cell adhesion and cartilage defect repair. J Mater Chem B 2022;10:1019-30.

91. Wang W, Caetano G, Ambler WS, et al. Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 2016;9:992.

92. Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, et al. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci Transl Med 2020;12:eaay6853.

93. O'Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F. Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Eng Part A 2021;27:1099-109.

94. Li ZA, Shang J, Xiang S, et al. Articular tissue-mimicking organoids derived from mesenchymal stem cells and induced pluripotent stem cells. Organoids 2022;1:135-48.

95. Zeng D, Chen Y, Liao Z, et al. Cartilage organoids and osteoarthritis research: a narrative review. Front Bioeng Biotechnol 2023;11:1278692.

96. Crispim JF, Ito K. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels. Acta Biomater 2021;128:236-49.

97. Abe K, Yamashita A, Morioka M, et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun 2023;14:804.

98. Yang Z, Wang B, Liu W, et al. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater 2023;27:200-15.

99. Barui S, Ghosh D, Laurencin CT. Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives. Regen Biomater 2023;10:rbac109.

100. Sarsenova M, Raimagambetov Y, Issabekova A, et al. Regeneration of osteochondral defects by combined delivery of synovium-derived mesenchymal stem cells, TGF-β1 and BMP-4 in heparin-conjugated fibrin hydrogel. Polymers 2022;14:5343.

101. Jiang Q, Zhang S. Stimulus-responsive drug delivery nanoplatforms for osteoarthritis therapy. Small 2023;19:e2206929.

102. Zou F, Meng H, Ma M, et al. Synergistic strategy constructed novel double-network scaffolds with active micro-environment pH stabilization and M2-macrophage polarization for cartilage defect repair. Compos Part B Eng 2023;258:110709.

103. Liu Z, Luo Z, Yu H, et al. Near-infrared light-controlled kartogenin delivery of multifunctional Prussian blue nanocomposites for cartilage defect repair. Nanoscale 2023;15:9076-93.

104. Lin T, Wang H, Wu M, Hsu H, Yeh M. A bilineage thermosensitive hydrogel system for stimulation of mesenchymal stem cell differentiation and enhancement of osteochondral regeneration. Compos Part B Eng 2022;233:109614.

105. Ji X, Shao H, Li X, et al. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials 2022;285:121530.

106. Yu H, Huang C, Kong X, et al. Nanoarchitectonics of cartilage-targeting hydrogel microspheres with reactive oxygen species responsiveness for the repair of osteoarthritis. ACS Appl Mater Interfaces 2022;14:40711-23.

107. Liu Y, Dzidotor G, Le TT, et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Science Transl Med 2022;14:eabi7282.

108. Vinikoor T, Dzidotor GK, Le TT, et al. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun 2023;14:6257.

109. Wu S, Zhang H, Wang S, et al. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater Horiz 2023;10:3507-22.

110. Gao C, Dai W, Wang X, et al. Magnesium gradient‐based hierarchical scaffold for dual-lineage regeneration of osteochondral defect. Adv Funct Mater 2023;33:2304829.

111. Khader A, Arinzeh TL. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng 2020;117:194-209.

112. Shu C, Qin C, Chen L, et al. Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration. Adv Sci 2023;10:e2206875.

113. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020;94:1443-60.

114. Sun Y, Liu X, Zhu Y, et al. Tunable and controlled release of cobalt ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration. ACS Appl Mater Interfaces 2021;13:59051-66.

115. Deng C, Yang Q, Sun X, et al. Bioactive scaffolds with Li and Si ions-synergistic effects for osteochondral defects regeneration. Appl Mater Today 2018;10:203-16.

116. Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 2010;46:2736-8.

117. Lu M, Wang J, Ren G, et al. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res 2022;15:8804-9.

118. Komkova MA, Karyakina EE, Karyakin AA. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc 2018;140:11302-7.

119. Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019;224:119467.

120. Cao Z, Wang H, Chen J, et al. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater 2023;20:221-42.

121. Liu C, Cai Y, Wang J, et al. Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione sensing and fluorimetric ascorbic acid sensing. ACS Appl Mater Interfaces 2020;12:42521-30.

122. Wu T, Huang S, Yang H, et al. Bimetal biomimetic engineering utilizing metal-organic frameworks for superoxide dismutase mimic. ACS Mater Lett 2022;4:751-7.

123. Liu X, Wei Y, Xuan C, et al. A biomimetic biphasic osteochondral scaffold with layer-specific release of stem cell differentiation inducers for the reconstruction of osteochondral defects. Adv Healthc Mater 2020;9:e2000076.

124. Zheng L, Li D, Wang W, et al. Bilayered scaffold prepared from a kartogenin-loaded hydrogel and BMP-2-derived peptide-loaded porous nanofibrous scaffold for osteochondral defect repair. ACS Biomater Sci Eng 2019;5:4564-73.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/