REFERENCES
3. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x < -1): a new cathode material for batteries of high energy density. Mater Res Bull 1980;15:783-9.
4. Yao YX, Yan C, Zhang Q. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem Commun 2020;56:14570-84.
5. Wang L, Liu G, Xu R, et al. Enabling an intrinsically safe and high-energy-density 4.5 V-class lithium-ion battery with synergistically incorporated fast ion conductors. Adv Energy Mater 2023;13:2203999.
6. Kundu D, Vajargah SH, Wan L, Adams B, Prendergast D, Nazar LF. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci 2018;11:881-92.
7. Zhao LF, Hu Z, Lai WH, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.
8. Bonnick P, Muldoon J. The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy Environ Sci 2020;13:4808-33.
9. Zhao Y, Ye Y, Wu F, Li Y, Li L, Chen R. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv Mater 2019;31:e1806532.
10. Ji H, Wang Z, Sun Y, et al. Weakening Li+ De-solvation barrier for cryogenic Li-S pouch cells. Adv Mater 2023;35:e2208590.
11. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. ACC Chem Res 2013;46:1125-34.
12. Bandyopadhyay S, Nandan B. A review on design of cathode, anode and solid electrolyte for true all-solid-state lithium sulfur batteries. Mater Today Energy 2023;31:101201.
13. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci 2020;6:1095-104.
14. Bi CX, Zhao M, Hou LP, et al. Anode material options toward 500 Wh kg-1 lithium-sulfur batteries. Adv Sci 2022;9:e2103910.
15. Gong Y, Li J, Yang K, et al. Towards practical application of Li-S battery with high sulfur loading and lean electrolyte: will carbon-based hosts win this race? Nanomicro Lett 2023;15:150.
16. Zhang T, Zhang L, Zhao L, Huang X, Hou Y. Catalytic effects in the cathode of Li-S batteries: accelerating polysulfides redox conversion. EnergyChem 2020;2:100036.
17. Yang JL, Cai DQ, Hao XG, et al. Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium-sulfur batteries. ACS Nano 2021;15:11491-500.
18. Xiang Y, Lu L, Kottapalli AGP, Pei Y. Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries. Carbon Energy 2022;4:346-98.
19. He Y, Zou P, Bak S, et al. Dual passivation of cathode and anode through electrode-electrolyte interface engineering enables long-lifespan Li metal-SPAN batteries. ACS Energy Lett 2022;7:2866-75.
20. Xing C, Chen H, Qian S, et al. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem 2022;8:1201-30.
21. Chen X, Hou T, Persson KA, Zhang Q. Combining theory and experiment in lithium-sulfur batteries: current progress and future perspectives. Mater Today 2019;22:142-58.
22. Sun X, Qiu Y, Jiang B, et al. Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat Commun 2023;14:291.
23. Zhou S, Shi J, Liu S, et al. Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 2023;621:75-81.
24. Zhou L, Danilov DL, Qiao F, et al. Sulfur reduction reaction in lithium-sulfur batteries: mechanisms, catalysts, and characterization. Adv Energy Mater 2022;12:2202094.
25. Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G. Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv Mater 2021;33:e2003666.
26. Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J. Rationalizing electrocatalysis of Li-S chemistry by mediator design: progress and prospects. Adv Energy Mater 2020;10:1901075.
27. Li C, Xi Z, Guo D, Chen X, Yin L. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018;14:1701986.
28. Tang T, Hou Y. Multifunctionality of carbon-based frameworks in lithium sulfur batteries. Electrochem Energy Rev 2018;1:403-32.
29. Li Z, Zhou Y, Wang Y, Lu Y. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv Energy Mater 2019;9:1802207.
30. Yuan H, Peng H, Li B, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv Energy Mater 2019;9:1802768.
31. Hou R, Zhang S, Zhang Y, et al. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries. Adv Funct Mater 2022;32:2200302.
32. Zhang X, He B, Li W, Lu A. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res 2018;11:1238-46.
33. Ma F, Srinivas K, Zhang X, et al. Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv Funct Mater 2022;32:2206113.
34. He B, Liu D, Cheng Z, et al. Enabling selenium-rich SexSy cathodes to work in carbonate-based electrolytes. Adv Energy Mater 2022;12:2102832.
35. Deng W, Phung J, Li G, Wang X. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy 2021;82:105761.
36. Yu Z, Liu M, Guo D, et al. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew Chem Int Ed 2020;59:6406-11.
37. Djuandhi L, Mittal U, Sharma N, Andersen HL. The role of carbon-based cathode components in Li-S batteries. J Electrochem Soc 2023;170:010522.
38. Wang R, Yang J, Chen X, et al. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery. Adv Energy Mater 2020;10:1903550.
39. Peng H, Zhang Y, Chen Y, et al. Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. Mater Today Energy 2020;18:100519.
40. Li G, Qiu W, Gao W, et al. Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a Bi-service matrix for superior lithium-sulfur electrochemistry. Adv Funct Mater 2022;32:2202853.
41. Zhang W, Xu B, Zhang L, et al. Co4N-decorated 3D wood-derived carbon host enables enhanced cathodic electrocatalysis and homogeneous lithium deposition for lithium-sulfur full cells. Small 2022;18:e2105664.
42. Xu Z, Kim J, Kang K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 2018;19:84-107.
43. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009;38:2520-31.
44. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500-6.
45. Yu X, Li W, Hu Y, Ye C, Lu A. Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment. Nano Res 2021;14:1565-73.
46. Zhang Y, Li W, He B, Yu X, Hou L, Lu A. Utilizing the alterable solubility of chitosan in aqueous solution to synthesize nanosized sulfur for high performance Li-S batteries. Chin J Chem 2019;37:775-80.
47. Zhang L, He B, Li W, Lu A. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode. Adv Energy Mater 2017;7:1701518.
48. Liu Y, Ma Z, Yang G, et al. Multifunctional ZnCo2O4 quantum dots encapsulated in carbon carrier for anchoring/catalyzing polysulfides and self-repairing lithium metal anode in lithium-sulfur batteries. Adv Funct Mater 2022;32:2109462.
49. Xiang J, Shen W, Guo Z, et al. A supramolecular complex of C60-S with high-density active sites as a cathode for lithium-sulfur batteries. Angew Chem Int Ed 2021;60:14313-8.
50. Fu C, Oviedo MB, Zhu Y, et al. Confined lithium-sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano 2018;12:9775-84.
51. Lin J, Mo Y, Li S, Yu J. Nitrogen-doped porous carbon fiber/vertical graphene as an efficient polysulfide conversion catalyst for high-performance lithium-sulfur batteries. J Mater Chem A 2022;10:690-8.
52. Peng L, Wei Z, Wan C, et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal 2020;3:762-70.
53. Zhou G, Li L, Wang DW, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv Mater 2015;27:641-7.
54. Han Z, Zhao S, Xiao J, et al. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv Mater 2021;33:e2105947.
55. Qi C, Li Z, Wang G, et al. Microregion welding strategy prevents the formation of inactive sulfur species for high-performance Li-S battery. Adv Energy Mater 2021;11:2102024.
56. Lu R, Cheng M, Mao L, et al. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat 2020;2:e12010.
57. He B, Li W, Chen Z, et al. Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res 2021;14:1273-9.
58. Wang N, Zhang X, Ju Z, et al. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat Commun 2021;12:4519.
59. Qin J, Wang R, Xiao P, Wang D. Engineering cooperative catalysis in Li-S batteries. Adv Energy Mater 2023;13:2300611.
60. Yu X, Li W, He B, et al. Porous carbon/borocarbonitride hybrid with enhanced tap density as a polar host for ultralong life lithium-sulfur batteries. Chem Eng J 2022;430:132987.
61. Wang J, Han W. A review of heteroatom doped materials for advanced lithium-sulfur batteries. Adv Funct Mater 2022;32:2107166.
62. Pan J, Sun Y, Wu Y, et al. Yolk-double shells hierarchical N-doped carbon nanosphere as an electrochemical nanoreactor for high performance lithium-sulfur batteries. Carbon 2022;198:80-90.
63. Ji L, Rao M, Zheng H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 2011;133:18522-5.
64. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed 2013;52:3110-6.
65. Fang R, Zhao S, Pei S, et al. Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 2016;10:8676-82.
66. Song J, Yu Z, Gordin ML, Wang D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 2016;16:864-70.
67. Hu C, Kirk C, Cai Q, et al. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium-sulfur batteries. Adv Energy Mater 2017;7:1701082.
68. Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed 2017;56:8178-82.
69. Xu J, Su D, Zhang W, Bao W, Wang G. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries. J Mater Chem A 2016;4:17381-93.
70. Hao GP, Tang C, Zhang E, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries. Adv Mater 2017;29:1702829.
71. Li L, Tu H, Wang J, et al. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics. Adv Funct Mater 2023;33:2212499.
72. Seh ZW, Zhang Q, Li W, Zheng G, Yao H, Cui Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem Sci 2013;4:3673-7.
73. Zhou W, Xiao X, Cai M, Yang L. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett 2014;14:5250-6.
74. Qiao X, Wang C, Zang J, et al. Conductive inks composed of multicomponent carbon nanomaterials and hydrophilic polymer binders for high-energy-density lithium-sulfur batteries. Energy Stor Mater 2022;49:236-45.
75. Kong W, Sun L, Wu Y, et al. Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries. Carbon 2016;96:1053-9.
76. Gu PY, Zhao Y, Xie J, et al. Improving the performance of lithium-sulfur batteries by employing polyimide particles as hosting matrixes. ACS Appl Mater Interfaces 2016;8:7464-70.
77. Su D, Cortie M, Fan H, Wang G. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv Mater 2017;29:1700587.
78. Ding Z, Zhao D, Yao R, Li C, Cheng X, Hu T. Polyaniline@spherical ordered mesoporous carbon/sulfur nanocomposites for high-performance lithium-sulfur batteries. Int J Hydrogen Energy 2018;43:10502-10.
79. Zhang K, Li X, Yang Y, et al. High loading sulfur cathodes by reactive-type polymer tubes for high-performance lithium-sulfur batteries. Adv Funct Mater 2023;33:2212759.
80. Hu H, Cheng H, Liu Z, Li G, Zhu Q, Yu Y. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries. Nano Lett 2015;15:5116-23.
81. Chen CY, Peng HJ, Hou TZ, et al. A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv Mater 2017;29:1606802.
82. Dong F, Peng C, Xu H, et al. Lithiated sulfur-incorporated, polymeric cathode for durable lithium-sulfur batteries with promoted redox kinetics. ACS Nano 2021;15:20287-99.
83. Zhao CX, Li XY, Zhao M, et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J Am Chem Soc 2021;143:19865-72.
84. He B, Li W, Zhang Y, et al. Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium-sulfur battery. J Mater Chem A 2018;6:24194-200.
85. Zhou S, Pei W, Zhao Y, Yang X, Liu N, Zhao J. Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. NPJ Comput Mater 2021;7:186.
86. Lee BJ, Zhao C, Yu JH, et al. Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy. Nat Commun 2022;13:4629.
87. Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol 2014;9:372-7.
88. Li L, Chen L, Mukherjee S, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv Mater 2017;29:1602734.
89. Liang J, Yin L, Tang X, et al. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl Mater Interfaces 2016;8:25193-201.
90. Wen Y, Shen Z, Hui J, Zhang H, Zhu Q. Co/CoSe junctions enable efficient and durable electrocatalytic conversion of polysulfides for high-performance Li-S batteries. Adv Energy Mater 2023;13:2204345.
91. Li J, Shi K, Pan J, et al. Designing electrochemical nanoreactors to accelerate Li2S1/2 three-dimensional growth process and generating more Li2S for advanced Li-S batteries. Renewables 2023;1:341-52.
92. Xie Y, Ao J, Zhang L, et al. Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries. Chem Eng J 2023;451:139017.
93. Liu Q, Wu Y, Li D, et al. Dilute alloying to implant activation centers in nitride electrocatalysts for lithium-sulfur batteries. Adv Mater 2023;35:e2209233.
94. Lu Y, Qin J, Shen T, et al. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv Energy Mater 2021;11:2101780.
95. Yu X, Chen W, Cai J, Lu X, Sun Z. Oxygen vacancy-rich MnO nanoflakes/N-doped carbon nanotubes modified separator enabling chemisorption and catalytic conversion of polysulfides for Li-S batteries. J Colloid Interface Sci 2022;610:407-17.
96. Wei Seh Z, Li W, Cha JJ, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 2013;4:1331.
97. Yu M, Ma J, Song H, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ Sci 2016;9:1495-503.
98. Fang M, Chen Z, Liu Y, et al. Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries. J Mater Chem A 2018;6:1630-8.
99. Rehman S, Tang T, Ali Z, Huang X, Hou Y. Integrated design of MnO2@Carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017;13:1700087.
100. Xu J, Zhang W, Chen Y, Fan H, Su D, Wang G. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries. J Mater Chem A 2018;6:2797-807.
101. Zhou L, Li H, Wu X, et al. Double-shelled Co3O4/C nanocages enabling polysulfides adsorption for high-performance lithium-sulfur batteries. ACS Appl Energy Mater 2019;2:8153-62.
102. Chu R, Nguyen TT, Bai Y, Kim NH, Lee JH. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium-sulfur batteries. Adv Energy Mater 2022;12:2102805.
103. Hua W, Shang T, Li H, et al. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nat Catal 2023;6:174-84.
104. Dai X, Lv G, Wu Z, et al. Flexible hierarchical Co-doped NiS2@CNF-CNT electron deficient interlayer with grass-roots structure for Li-S batteries. Adv Energy Mater 2023;13:2300452.
105. Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA 2017;114:840-5.
106. He J, Bhargav A, Manthiram A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode. ACS Energy Lett 2022;7:583-90.
107. Xie Y, Cao J, Wang X, et al. MOF-derived bifunctional Co0.85Se nanoparticles embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium-sulfur batteries. Nano Lett 2021;21:8579-86.
108. Chen T, Ma L, Cheng B, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017;38:239-48.
109. Shi M, Liu Z, Zhang S, et al. A mott-schottky heterogeneous layer for Li-S batteries: enabling both high stability and commercial-sulfur utilization. Adv Energy Mater 2022;12:2103657.
110. Lin H, Yang L, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ Sci 2017;10:1476-86.
111. You Y, Ye Y, Wei M, et al. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem Eng J 2019;355:671-8.
112. Hu L, Dai C, Lim JM, et al. A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries. Chem Sci 2018;9:666-75.
113. Feng Y, Zu L, Yang S, et al. Ultrahigh-content Co-P cluster as a dual-atom-site electrocatalyst for accelerating polysulfides conversion in Li-S batteries. Adv Funct Mater 2022;32:2207579.
114. Hu Z, Geng C, Wang L, Lv W, Yang Q. Revisiting the roles of carbon in the catalysis of lithium-sulfur batteries. Adv Energy Sustain Res 2024;5:2300148.
115. Yu X, Tian D, Li W, et al. One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res 2019;12:1193-7.
116. Mi Y, Liu W, Li X, Zhuang J, Zhou H, Wang H. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res 2017;10:3698-705.
117. Ye Z, Jiang Y, Qian J, et al. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries. Nano Energy 2019;64:103965.
118. Huang S, Lim YV, Zhang X, et al. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy 2018;51:340-8.
119. Li S, Lin J, Chang B, et al. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater 2023;55:94-104.
120. Li Z, Li B, Yu C, Wang H, Li Q. Recent progress of hollow carbon nanocages: general design fundamentals and diversified electrochemical applications. Adv Sci 2023;10:e2206605.
121. Zhou J, Tang W, Shu C, et al. Well-defined metal-N4 sites coordinated defective carbon as efficient electrocatalysts for high performance lithium-sulfur batteries. Mater Today Energy 2022;30:101151.
122. Du Z, Chen X, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc 2019;141:3977-85.
123. Yang JL, Yang P, Cai DQ, Wang Z, Fan HJ. Atomically dispersed Fe-N4 and Ni-N4 independent sites enable bidirectional sulfur redox electrocatalysis. Nano Lett 2023;23:4000-7.
124. Yu X, He B, Li W, Wu T, Chen X, Lu A. Multi-cavity carbon nanofiber film decorated with Co-Nx doped CNTs for lithium-sulfur batteries with high-areal-capacity. J Mater Chem A 2022;10:12168-76.
125. Zhou T, Lv W, Li J, et al. Twinborn TiO2 -TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ Sci 2017;10:1694-703.
126. Song Y, Zhao W, Kong L, et al. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ Sci 2018;11:2620-30.
127. Wang B, Ren Y, Zhu Y, et al. Construction of Co3O4/ZnO heterojunctions in hollow N-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv Sci 2023;10:e2300860.