REFERENCES

1. Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous pathogens as a potential problem for public health. Medicina 2020;56:591.

2. Uddin TM, Chakraborty AJ, Khusro A, et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021;14:1750-66.

3. Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 2020;12:3313.

4. Ukuhor HO. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health 2021;14:53-60.

5. Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater 2020;32:e1904106.

6. Wang L, Tang X, Yang Z, et al. Regulation of functional groups enable the metal-free PDINH/GO advisable antibacterial photocatalytic therapy. Chem Eng J 2023;451:139007.

7. Wang L, Liu L, You Z, et al. Surface amorphization oxygen vacancy-rich porous Sn3Ox nanosheets for boosted photoelectrocatalytic bacterial inactivation. Rare Met 2023;42:1508-15.

8. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 2016;116:7159-329.

9. Iqbal O, Ali H, Li N, et al. A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Mater Today Phys 2023;34:101080.

10. Wang J, Wang S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coord Chem Rev 2022;453:214338.

11. Yu Y, Yan W, Wang X, et al. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv Mater 2018;30:1705060.

12. Cao S, Yu J. g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 2014;5:2101-7.

13. Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 2009;8:76-80.

14. Yu Y, Wang J. Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity. Ceram Int 2016;42:4063-71.

15. Huang J, Ho W, Wang X. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem Commun 2014;50:4338-40.

16. Thurston JH, Hunter NM, Wayment LJ, Cornell KA. Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity. J Colloid Interface Sci 2017;505:910-8.

17. Khan ME, Han TH, Khan MM, Karim MR, Cho MH. Environmentally sustainable fabrication of Ag@ g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl Nano Mater 2018;1:2912-22.

18. Sun L, Du T, Hu C, et al. Antibacterial activity of graphene Oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain Chem Eng 2017;5:8693-701.

19. Aquino de Carvalho N, Wang Y, Morales-soto N, et al. Using C-doping to identify photocatalytic properties of graphitic carbon nitride that govern antibacterial efficacy. ACS EST Water 2021;1:269-80.

20. Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 2017;43:907-14.

21. Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 2015;7:219-42.

22. Sundaram IM, Kalimuthu S, Ponniah G. Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Compos Commun 2017;5:64-71.

23. Qamar MA, Shahid S, Javed M, Iqbal S, Sher M, Akbar MB. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J Photoch Photobio A Chem 2020;401:112776.

24. Qamar MA, Shahid S, Javed M, et al. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloid Surface A Physicochem Eng Asp 2021;611:125863.

25. Dai X, Liu H, Du W, et al. Biocompatible carbon nitride quantum dots nanozymes with high nitrogen vacancies enhance peroxidase-like activity for broad-spectrum antibacterial. Nano Res 2023;16:7237-47.

26. Wang L, Yang Z, Song G, et al. Construction of S-N-C bond for boosting bacteria-killing by synergistic effect of photocatalysis and nanozyme. Appl Catal B Environ 2023;325:122345.

27. Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review. Carbon 2019;149:693-721.

28. Tian B, Ho D, Qin J, et al. Framework structure engineering of polymeric carbon nitrides and its recent applications. Prog Mater Sci 2023;133:101056.

29. Majdoub M, Anfar Z, Amedlous A. Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications. ACS Nano 2020;14:12390-469.

30. Yu F, Wang Z, Zhang S, et al. Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation. Adv Funct Mater 2018;28:1804512.

31. Yu Y, Cheng S, Wang L, et al. Self-assembly of yolk-shell porous Fe-doped g-C3N4 microarchitectures with excellent photocatalytic performance under visible light. Sustain Mater Technol 2018;17:e00072.

32. Zhu B, Zhang J, Jiang C, Cheng B, Yu J. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl Catal B Environ 2017;207:27-34.

33. Liu J, Cheng B, Yu J. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. Phys Chem Chem Phys 2016;18:31175-83.

34. Zhu B, Cheng B, Zhang L, Yu J. Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 2019;1:32-56.

35. Chen X, Shi R, Chen Q, et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 2019;59:644-50.

36. Fu J, Zhu B, Jiang C, Cheng B, You W, Yu J. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017;13:1603938.

37. Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun 2012;3:1139.

38. Zheng Y, Lin L, Ye X, Guo F, Wang X. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed 2014;53:11926-30.

39. Ran J, Ma TY, Gao G, Du X, Qiao SZ. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ Sci 2015;8:3708-17.

40. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694.

41. Kofuji Y, Isobe Y, Shiraishi Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J Am Chem Soc 2016;138:10019-25.

42. Zhang G, Li G, Lan ZA, et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew Chem Int Ed 2017;56:13445-9.

43. Lin L, Lin Z, Zhang J, et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat Catal 2020;3:649-55.

44. Groenewolt M, Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv Mater 2005;17:1789-92.

45. Gupta A, Bhoyar T, Abraham BM, et al. Potassium molten salt-mediated in situ structural reconstruction of a carbon nitride photocatalyst. ACS Appl Mater Interfaces 2023;15:18898-906.

46. Yingsu J, Liu Y, Huang H, et al. Molten-salt synthesis of triazine-based carbon nitride and its photocatalytic degradation mechanism investigation by in situ NMR. J Phy Chem C 2023;127:8687-94.

47. Miller TS, Suter TM, Telford AM, et al. Single crystal, luminescent carbon nitride nanosheets formed by spontaneous dissolution. Nano Lett 2017;17:5891-6.

48. Ou H, Lin L, Zheng Y, Yang P, Fang Y, Wang X. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv Mater 2017;29:1700008.

49. Zhang G, Liu M, Heil T, et al. Electron deficient monomers that optimize nucleation and enhance the photocatalytic redox activity of carbon nitrides. Angew Chem Int Ed 2019;58:14950-4.

50. Guo M, Liu J, Chen X, et al. Graphdiyne oxide nanosheets reprogram immunosuppressive macrophage for cancer immunotherapy. Nano Today 2022;45:101543.

51. Guo F, Hu B, Yang C, Zhang J, Hou Y, Wang X. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv Mater 2021;33:e2101466.

52. Liang X, Xue S, Yang C, et al. The directional crystallization process of poly (triazine imide) single crystals in molten salts. Angew Chem Int Ed 2023;62:e202216434.

53. Xu J, Cao S, Brenner T, et al. Supramolecular chemistry in molten sulfur: preorganization effects leading to marked enhancement of carbon nitride photoelectrochemistry. Adv Funct Mater 2015;25:6265-71.

54. Wang L, Li B, You Z, et al. Heterojunction of vertically arrayed MoS2 nanosheet/N-doped reduced graphene oxide enabling a nanozyme for sensitive biomolecule monitoring. Anal Chem 2021;93:11123-32.

55. Li Q, Luan X, Xiao Z, et al. Ultrafast microwave synthesis of Ru-doped MoP with abundant P vacancies as the electrocatalyst for hydrogen generation in a wide pH range. Inorg Chem 2023;62:9687-94.

56. Yuan Y, Yin L, Cao S, et al. Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production. Green Chem 2014;16:4663-8.

57. Yu Y, Zhou Q, Wang J. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem Commun 2016;52:3396-9.

58. Yang S, Gong Y, Zhang J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 2013;25:2452-6.

59. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 2013;135:18-21.

60. Niu P, Zhang L, Liu G, Cheng H. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 2012;22:4763-70.

61. Han Q, Wang B, Gao J, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016;10:2745-51.

62. Lakhi KS, Park DH, Al-Bahily K, et al. Correction: mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem Soc Rev 2017;46:560.

63. Yan Q, Zhao C, Zhang L, et al. Facile two-step synthesis of porous carbon nitride with enhanced photocatalytic activity using a soft template. ACS Sustain Chem Eng 2019;7:3866-74.

64. Yang Z, Zhang Y, Schnepp Z. Soft and hard templating of graphitic carbon nitride. J Mater Chem A 2015;3:14081-92.

65. Liu Z, Ma J, Hong M, Sun R. Potassium and sulfur dual sites on highly crystalline carbon nitride for photocatalytic biorefinery and CO2 reduction. ACS Catal 2023;13:2106-17.

66. Zheng D, Huang C, Wang X. Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. Nanoscale 2015;7:465-70.

67. Fihri A, Bouhrara M, Patil U, Cha D, Saih Y, Polshettiwar V. Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime. ACS Catal 2012;2:1425-31.

68. Li X, Zhang J, Chen X, et al. Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chem Mater 2011;23:4344-8.

69. Wang Y, Wang X, Antonietti M, Zhang Y. Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem 2010;3:435-9.

70. Yan H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun 2012;48:3430-2.

71. Xin Q, Shah H, Nawaz A, et al. Antibacterial carbon-based nanomaterials. Adv Mater 2019;31:e1804838.

72. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010;4:5731-6.

73. Liu S, Wei L, Hao L, et al. Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 2009;3:3891-902.

74. Alimohammadi F, Sharifian Gh M, Attanayake NH, et al. Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir 2018;34:7192-200.

75. Zou X, Zhang L, Wang Z, Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 2016;138:2064-77.

76. Zheng K, Li K, Chang T, Xie J, Chen P. Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv Funct Mater 2019;29:1904603.

77. Popescu A, Doyle RJ. The Gram stain after more than a century. Biotech Histochem 1996;71:145-51.

78. Dallavalle M, Calvaresi M, Bottoni A, Melle-Franco M, Zerbetto F. Graphene can wreak havoc with cell membranes. ACS Appl Mater Interfaces 2015;7:4406-14.

79. Cui H, Gu Z, Chen X, et al. Stimulating antibacterial activities of graphitic carbon nitride nanosheets with plasma treatment. Nanoscale 2019;11:18416-25.

80. Sharma RK, Yadav S, Dutta S, et al. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021;50:11293-380.

81. Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 2019;119:4881-985.

82. Zhao C, Tian L, Zou Z, et al. Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Appl Catal B Environ 2020;268:118445.

83. Chen P, Ou X, Xia C, et al. Construction of dual Z-scheme g-C3N4/BiVO4 (040)/In2S3 photocatalyst for efficient photocatalytic degradation and sterilization under solar light irradiation. Appl Surf Sci 2024;643:158665.

84. Rather RA, Lo IMC. Photoelectrochemical sewage treatment by a multifunctional g-C3N4/Ag/AgCl/BiVO4 photoanode for the simultaneous degradation of emerging pollutants and hydrogen production, and the disinfection of E. coli. Water Res 2020;168:115166.

85. Li G, Nie X, Chen J, et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res 2015;86:17-24.

86. Ni L, Zhu Y, Ma J, et al. Improved anti-biofouling performance of CdS/g-C3N4/rGO modified membranes based on in situ visible light photocatalysis in anammox membrane bioreactor. J Membr Sci 2021;620:118861.

87. Yang X, Ye Y, Sun J, Li Z, Ping J, Sun X. Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: design strategies, mechanisms, and applications. Small 2022;18:e2105089.

88. Deng J, Liang J, Li M, Tong M. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr. Colloids Surf B 2017;152:49-57.

89. Li Y, Liu X, Tan L, et al. Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@ Bi2S3 nanorod heterojunction with or without antibiotics. Adv Funct Mater 2019;29:1900946.

90. Zhang C, Li Y, Wang C, Zheng X. Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C3N4-based-metal-free visible-light-enabled photocatalytic disinfection. Sci Total Environ 2021;755:142588.

91. Yan Y, Zhou X, Yu P, Li Z, Zheng T. Characteristics, mechanisms and bacteria behavior of photocatalysis with a solid Z-scheme Ag/AgBr/g-C3N4 nanosheet in water disinfection. Appl Catal A Gen 2020;590:117282.

92. Gao B, Dou M, Wang J, et al. Efficient persulfate activation by carbon defects g-C3N4 containing electron traps for the removal of antibiotics, resistant bacteria and genes. Chem Eng J 2021;426:131677.

93. Wang Z, Dong K, Liu Z, et al. Corrigendum to “activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection”. Biomaterials 2020;233:119754.

94. Zhao H, Yu H, Quan X, et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B Environ 2014;152-3:46-50.

95. Che S, Zhou X, Zhang L, Su D, Wang T, Wang C. Construction of a 2D layered phosphorus-doped graphitic carbon nitride/BiOBr heterojunction for highly efficient photocatalytic disinfection. Chem Asian J 2022;17:e202200095.

96. Xia P, Cao S, Zhu B, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed 2020;59:5218-25.

97. He N, Guo Z, Zhang C, et al. Bifunctional 2D/2D g-C3N4/BiO2-x nanosheets heterojunction for bacterial disinfection mechanisms under visible and near-infrared light irradiation. J Hazard Mater 2022;436:129123.

98. Dong M, Li Q, Xiao F, Wang Y, Yang D, Yang Y. Remarkably enhanced light and Ultrasonic-Boosting Peroxidase-like activity of g-C3N4-Cu-TCPP for antimicrobial applications. Appl Surf Sci 2023;633:157537.

99. Wang Z, Dong K, Liu Z, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 2017;113:145-57.

100. Wu Y, Xu W, Jiao L, et al. Defect engineering in nanozymes. Mater Today 2022;52:327-47.

101. Wang L, Gao F, Wang A, et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv Mater 2020;32:e2005423.

102. Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023;493:215329.

103. Dai X, Liu H, Cai B, et al. A bioinspired atomically thin nanodot supported single-atom nanozyme for antibacterial textile coating. Small 2023;19:e2303901.

104. Ni Y, Wang R, Zhang W, et al. Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: synthesis, efficacy and mechanism. Chem Eng J 2021;404:126528.

105. Zhang P, Sun D, Cho A, et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 2019;10:940.

106. Li Y, Li Y, Ma S, et al. Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light. J Hazard Mater 2017;338:33-46.

107. Teng Z, Yang N, Lv H, et al. Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 2019;5:664-80.

108. Peng L, Wang H, Li G, Zhang W, Liang Z, An T. Photocatalytic inactivation of airborne bacteria onto g-C3N4/TiO2/Ni-polydopamine/Ni bifunctional coupling filter with non-size dependent capture effect. Appl Catal B Environ 2023;329:122580.

109. Wang L, Zhang X, Yu X, et al. An All-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv Mater 2019;31:e1901965.

110. Peng X, Ma J, Zhou Z, et al. Molecular assembly of carbon nitride-based composite membranes for photocatalytic sterilization and wound healing. Chem Sci 2023;14:4319-27.

111. Guo J, Zhou J, Sun Z, et al. Enhanced photocatalytic and antibacterial activity of acridinium-grafted g-C3N4 with broad-spectrum light absorption for antimicrobial photocatalytic therapy. Acta Biomater 2022;146:370-84.

112. Ma W, Pan J, Ren W, et al. Fabrication of antibacterial and self-cleaning CuxP@g-C3N4/PVDF-CTFE mixed matrix membranes with enhanced properties for efficient ultrafiltration. J Membr Sci 2022;659:120792.

113. Chen C, Chen L, Zhu X, Chen B. Graphene nanofiltration membrane intercalated with AgNP@g-C3N4 for efficient water purification and photocatalytic self-cleaning performance. Chem Eng J 2022;441:136089.

114. Xiong Q, Chen Y, Xu T, Zhu Z, Chen W, Lu W. Highly efficient purification of emerging pollutants and bacteria in natural water by g-C3N4-sheltered fibers containing TiO2. Appl Surf Sci 2021;559:149839.

115. Li R, Ren Y, Zhao P, Wang J, Liu J, Zhang Y. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. J Hazard Mater 2019;365:606-14.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/