REFERENCES

1. Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal 2018;1:490-500.

2. Shi L, Yin Y, Wang S, Sun H. Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal 2020;10:6870-99.

3. Deng J, Iñiguez JA, Liu C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018;2:846-56.

4. Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today 2019;27:69-90.

5. Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 2015;8:2180-6.

6. Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev 2020;120:12217-314.

7. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

8. Zhang J, Liu C, Zhang B. Insights into single-atom metal–support interactions in electrocatalytic water splitting. Small Methods 2019;3:1800481.

9. Song Z, Zhang L, Doyle-Davis K, Fu X, Luo J, Sun X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv Energy Mater 2020;10:2001561.

10. Yu H, Wang Z, Tian W, et al. Boosting electrochemical nitrogen fixation by mesoporous Rh film with boron and sulfur co-doping. Mater Today Energy 2021;20:100681.

11. Cai L, Zhang N, Qiu B, Chai Y. Computational design of transition metal single-atom electrocatalysts on PtS2 for efficient nitrogen reduction. ACS Appl Mater Interfaces 2020;12:20448-55.

12. van der Ham CJ, Koper MT, Hetterscheid DG. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 2014;43:5183-91.

13. Shipman MA, Symes MD. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today 2017;286:57-68.

14. Wang Q, Lei Y, Wang D, Li Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci 2019;12:1730-50.

15. Han S, Wei X, Huang Y, Zhang J, Yang J, Wang Z. Tuning the activity and selectivity of nitrogen reduction reaction on double-atom catalysts by B doping: a density functional theory study. Nano Energy 2022;99:107363.

16. Han J, Bao H, Wang J, et al. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl Catal B Environ 2021;280:119411.

17. Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv Mater 2022;34:2105410.

18. Chu C, Huang D, Gupta S, et al. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nat Commun 2021;12:5179.

19. Wu ZY, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun 2021;12:2870.

20. Wu J, Zhou H, Li Q, et al. Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv Energy Mater 2019;9:1900149.

21. Rong X, Wang HJ, Lu XL, Si R, Lu TB. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew Chem Int Ed Engl 2020;59:1961-5.

22. Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J Am Chem Soc 2020;142:2404-12.

23. Wang Z, Jin X, Xu R, et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS Nano 2023;17:8622-33.

24. Tamtaji M, Cai S, Wu W, et al. Single and dual metal atom catalysts for enhanced singlet oxygen generation and oxygen reduction reaction. J Mater Chem A 2023;11:7513-25.

25. Chen W, Pei J, He CT, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater 2018;30:1800396.

26. Wang X, Chen W, Zhang L, et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc 2017;139:9419-22.

27. Zhang L, Fischer JMTA, Jia Y, et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc 2018;140:10757-63.

28. Chen Z, Zhang X, Liu W, et al. Amination strategy to boost the CO2 electroreduction current density of M–N/C single-atom catalysts to the industrial application level. Energy Environ Sci 2021;14:2349-56.

29. Guo W, Wang Z, Wang X, Wu Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv Mater 2021;33:2004287.

30. Han X, Ling X, Wang Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew Chem Int Ed Engl 2019;58:5359-64.

31. Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 2017;139:8078-81.

32. Jiao L, Zhu J, Zhang Y, et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J Am Chem Soc 2021;143:19417-24.

33. Zhao Y, Zhou H, Chen W, et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J Am Chem Soc 2019;141:10590-4.

34. Ma X, Liu H, Yang W, Mao G, Zheng L, Jiang HL. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J Am Chem Soc 2021;143:12220-9.

35. Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 2018;30:1705112.

36. Qiao B, Lin J, Wang A, Chen Y, Zhang T, Liu J. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chinese J Catal 2015;36:1505-11.

37. Peng W, Luo M, Xu X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv Energy Mater 2020;10:2001364.

38. Yang Y, Yang Q, Yang Y, et al. Enhancing water oxidation of Ru single atoms via oxygen-coordination bonding with NiFe layered double hydroxide. ACS Catal 2023;13:2771-9.

39. Xiang G, Zhao S, Wei C, et al. Atomically dispersed Au catalysts for preferential oxidation of CO in H2-rich stream. Appl Catal B Environ 2021;296:120385.

40. Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloy catalysis. Chem Rev 2020;120:12044-88.

41. Zhang T, Walsh AG, Yu J, Zhang P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem Soc Rev 2021;50:569-88.

42. Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: synthesis, properties, and applications in environmental catalysis. J Hazard Mater 2022;424:127427.

43. Wang H, Jiao L, Zheng L, et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv Funct Mater 2021;31:2103465.

44. Shen X, Liu X, Wang S, et al. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett 2021;21:686-92.

45. Mao J, He CT, Pei J, et al. Isolated Ni atoms dispersed on Ru nanosheets: high-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett 2020;20:3442-8.

46. Wang Y, Cao L, Libretto NJ, et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J Am Chem Soc 2019;141:16635-42.

47. Chen C, Wu D, Li Z, et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv Energy Mater 2019;9:1803913.

48. Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat Chem 2019;11:222-8.

49. Muravev V, Spezzati G, Su Y, et al. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat Catal 2021;4:469-78.

50. Zhang Z, Feng C, Liu C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat Commun 2020;11:1215.

51. Zhang J, Liu J, Xi L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J Am Chem Soc 2018;140:3876-9.

52. Xu J, Li R, Xu C, et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl Catal B Environ 2021;289:120028.

53. Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 2018;1:985-92.

54. Jiang K, Liu B, Luo M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun 2019;10:1743.

55. Zhang J, Pan Y, Feng D, et al. Mechanistic insight into the synergy between platinum single atom and cluster dual active sites boosting photocatalytic hydrogen evolution. Adv Mater 2023;35:e2300902.

56. Yang Z, Chen C, Zhao Y, et al. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction. Adv Mater 2023;35:e2208799.

57. Li J, Banis MN, Ren Z, et al. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small 2021;17:2007245.

58. Song Z, Wang Q, Li J, et al. Single-atom surface anchoring strategy via atomic layer deposition to achieve dual catalysts with remarkable electrochemical performance. EcoMat 2023;5:e12351.

59. Zhang L, Wang Q, Li L, et al. Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts. Nano Energy 2022;93:106813.

60. Jiao S, Kong M, Hu Z, Zhou S, Xu X, Liu L. Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small 2022;18:2105129.

61. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun 2017;8:1070.

62. Zafari M, Kumar D, Umer M, Kim KS. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. J Mater Chem A 2020;8:5209-16.

63. Wang Z, Wang C, Hu Y, et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res 2021;14:2790-6.

64. Shang H, Zhou X, Dong J, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat Commun 2020;11:3049.

65. Li X, Yang X, Liu L, et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal 2021;11:7450-9.

66. Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater 2018;30:e1800588.

67. Zhang G, Tang F, Wang X, Wang L, Liu Y. Atomically dispersed Co–S–N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds. ACS Catal 2022;12:5786-94.

68. Wang M, Yang W, Li X, et al. Atomically dispersed Fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett 2021;6:379-86.

69. Zhang H, Liu Y, Chen T, Zhang J, Zhang J, Lou XWD. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv Mater 2019;31:1904548.

70. Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J Am Chem Soc 2018;140:11594-8.

71. Cai Y, Fu J, Zhou Y, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat Commun 2021;12:586.

72. Wang F, Zhang R, Zhang Y, et al. Modulating electronic structure of atomically dispersed nickel sites through boron and nitrogen dual coordination boosts oxygen reduction. Adv Funct Mater 2023;33:2213863.

73. Jiao D, Liu Y, Cai Q, Zhao J. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study. J Mater Chem A 2021;9:1240-51.

74. Liu W, Zhang L, Liu X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J Am Chem Soc 2017;139:10790-8.

75. Zhang Y, Jiao L, Yang W, Xie C, Jiang HL. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew Chem Int Ed Engl 2021;60:7607-11.

76. Wang J, Qiu W, Li G, et al. Coordinatively deficient single-atom Fe-N-C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater 2022;46:269-77.

77. Zhang S, Ao X, Huang J, et al. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett 2021;21:9691-8.

78. Fan B, Wang H, Han X, Deng Y, Hu W. Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chem Commun 2022;58:8254-7.

79. Li X, Shen P, Luo Y, et al. PdFe single-atom alloy metallene for N2 electroreduction. Angew Chem Int Ed Engl 2022;61:e202205923.

80. Pan J, Zhang G, Guan Z, et al. Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn2S4 nanosheets for boosting photocatalytic hydrogen evolution. J Energy Chem 2021;58:408-14.

81. Han Z, Zhao S, Xiao J, et al. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv Mater 2021;33:2105947.

82. Han B, Guo Y, Huang Y, et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew Chem Int Ed Engl 2020;59:11824-9.

83. Hu B, Sun K, Zhuang Z, et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: enhanced stabilization and catalytic properties. Adv Mater 2022;34:2107721.

84. Shi Y, Ma ZR, Xiao YY, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 2021;12:3021.

85. Qu Y, Wang L, Li Z, et al. ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv Mater 2019;31:1904496.

86. Hu X, Luo G, Zhao Q, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J Am Chem Soc 2020;142:16776-86.

87. Liu L, Wang N, Zhu C, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew Chem Int Ed Engl 2020;59:819-25.

88. Chen S, Li WH, Jiang W, et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew Chem Int Ed Engl 2022;61:e202114450.

89. Liu G, Huang Y, Lv H, et al. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl Catal B Environ 2021;284:119683.

90. Su L, Wang P, Ma X, Wang J, Zhan S. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-fenton process. Angew Chem Int Ed Engl 2021;60:21261-6.

91. Kumar A, Liu X, Lee J, et al. Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis. Energy Environ Sci 2021;14:6494-505.

92. Chen W, Pei J, He CT, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed Engl 2017;56:16086-90.

93. Shah K, Dai R, Mateen M, et al. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew Chem Int Ed Engl 2022;61:e202114951.

94. Yang Y, Qian Y, Li H, et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci Adv 2020;6:eaba6586.

95. Cai C, Wang M, Han S, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal 2021;11:123-30.

96. Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc 2020;142:7425-33.

97. Zhou X, Gao J, Hu Y, et al. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett 2022;22:3392-9.

98. Wang Z, Jin X, Zhu C, et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv Mater 2021;33:2104718.

99. Zhang Z, Sun J, Wang F, Dai L. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew Chem Int Ed Engl 2018;57:9038-43.

100. Bai X, Zhao Z, Lu G. Breaking the scaling relationship on single-atom embedded MBene for selective CO2 electroreduction. J Phys Chem Lett 2023;14:5172-80.

101. Xiao J, Liu Z, Wang X, Li F, Zhao Z. Homonuclear multi-atom catalysts for CO2 electroreduction: a comparison density functional theory study with their single-atom counterparts. J Mater Chem A 2023;11:25662-70.

102. Chen Z, Chen LX, Yang CC, Jiang Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J Mater Chem A 2019;7:3492-515.

103. Zhao D, Zhuang Z, Cao X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev 2020;49:2215-64.

104. Yang Y, Yang Y, Pei Z, et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020;3:1442-76.

105. Li P, Jin Z, Fang Z, Yu G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ Sci 2021;14:3522-31.

106. Lv X, Wei W, Li F, Huang B, Dai Y. Metal-free B@g-CN: visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett 2019;19:6391-9.

107. Chen Y, Zhang X, Qin J, Liu R. High-throughput screening of single metal atom anchored on N-doped boron phosphide for N2 reduction. Nanoscale 2021;13:13437-50.

108. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal 2018;8:7517-25.

109. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 2017;139:12480-7.

110. Liu H, Han S, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J Mater Chem A 2018;6:3211-7.

111. Shi MM, Bao D, Wulan BR, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater 2017;29:1606550.

112. Tao H, Choi C, Ding L, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019;5:204-14.

113. Chen K, Ma Z, Li X, Kang J, Ma D, Chu K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv Funct Mater 2023;33:2209890.

114. Wang X, Wang W, Qiao M, et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull 2018;63:1246-53.

115. Sun H, Yin H, Shi W, et al. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res 2022;15:3026-33.

116. Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater 2018;30:1803498.

117. He T, Puente Santiago AR, Du A. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J Catal 2020;388:77-83.

118. Han L, Ren Z, Ou P, et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew Chem Int Ed Engl 2021;60:345-50.

119. Shang S, Xiong W, Yang C, et al. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano 2021;15:9670-8.

120. Li Y, Li J, Huang J, et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew Chem Int Ed Engl 2021;60:9078-85.

121. Hu R, Yu Y, Li Y, et al. Rational design of bimetallic atoms supported on C3N monolayer to break the linear relations for efficient electrochemical nitrogen reduction. Nano Res 2022;15:8656-64.

122. Li XF, Li QK, Cheng J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J Am Chem Soc 2016;138:8706-9.

123. Zhang R, Jiao L, Yang W, Wan G, Jiang H. Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. J Mater Chem A 2019;7:26371-7.

124. Liu K, Fu J, Zhu L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020;12:4903-8.

125. Lü F, Zhao S, Guo R, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019;61:420-7.

126. Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun 2019;10:341.

127. Zhang S, Jin M, Shi T, et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew Chem Int Ed Engl 2020;59:13423-9.

128. Zhang L, Zhao W, Zhang W, Chen J, Hu Z. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res 2019;12:1181-6.

129. Lin L, Wei F, Jiang R, Huang Y, Lin S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res 2023;16:309-17.

130. Sahoo SK, Heske J, Antonietti M, Qin Q, Oschatz M, Kühne TD. Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS Appl Energy Mater 2020;3:10061-9.

131. Li J, Chen S, Quan F, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020;6:885-901.

132. Su H, Chen L, Chen Y, et al. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia. Angew Chem Int Ed Engl 2020;59:20411-6.

133. Ling C, Bai X, Ouyang Y, Du A, Wang J. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J Phys Chem C 2018;122:16842-7.

134. Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed Engl 2019;58:2321-5.

135. Fan B, Wang H, Zhang H, et al. Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Adv Funct Mater 2022;32:2110783.

136. Song Y, Wang H, Song Z, et al. Ni-doped Mo2C anchored on graphitized porous carbon for boosting electrocatalytic N2 reduction. ACS Appl Mater Interfaces 2022;14:17273-81.

137. Ma Y, Yang T, Zou H, et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv Mater 2020;32:2002177.

138. Wang J, Zhang Z, Qi S, et al. Photo-assisted high performance single atom electrocatalysis of the N2 reduction reaction by a Mo-embedded covalent organic framework. J Mater Chem A 2021;9:19949-57.

139. Chen L, He C, Wang R, et al. Potential active sites of Mo single atoms for electrocatalytic reduction of N2. Chinese Chem Lett 2021;32:53-6.

140. Shi L, Bi S, Qi Y, et al. Anchoring Mo single-atom sites on B/N codoped porous carbon nanotubes for electrochemical reduction of N2 to NH3. ACS Catal 2022;12:7655-63.

141. Zhang C, Wang Z, Lei J, Ma L, Yakobson BI, Tour JM. Atomic molybdenum for synthesis of ammonia with 50% Faradic efficiency. Small 2022;18:e2106327.

142. Mukherjee S, Yang X, Shan W, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020;4:1900821.

143. Han L, Hou M, Ou P, et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal 2021;11:509-16.

144. Zang W, Yang T, Zou H, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal 2019;9:10166-73.

145. Zhang W, Fu Y, Peng Q, et al. Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. Chem Eng J 2020;394:124822.

146. Liu J, Kong X, Zheng L, Guo X, Liu X, Shui J. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020;14:1093-101.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/