REFERENCES
2. Guyonnet J, Gaponenko I, Gariglio S, Paruch P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv Mater 2011;23:5377-82.
3. Gao P, Nelson CT, Jokisaari JR, et al. Direct observations of retention failure in ferroelectric memories. Adv Mater 2012;24:1106-10.
5. Shirane G, Takeda A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (I) small concentrations of PbTiO3. J Phys Soc Jpn 1952;7:5-11.
6. Nassau K, Levinstein HJ, Loiacono GM. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J Phys Chem Solids 1966;27:983-8.
7. Anderson JR. Ferroelectric materials as storage elements for digital computers and switching systems. Trans AIEE Part I Comm Electron 1953;71:395-401.
9. Dam B, Huijbregtse JM, Klaassen FC, et al. Origin of high critical currents in YBa2Cu3O7-δ superconducting thin films. Nature 1999;399:439-42.
10. Roas B, Schultz L, Endres G. Epitaxial growth of YBa2Cu3O7-x thin films by a laser evaporation process. Appl Phys Lett 1988;53:1557-9.
11. de Araujo CAP, Cuchiaro JD, Mcmillan LD, Scott MC, Scott JF. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995;374:627-9.
12. Fong DD, Stephenson GB, Streiffer SK, et al. Ferroelectricity in ultrathin perovskite films. Science 2004;304:1650-3.
13. Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003;299:1719-22.
14. Lee D, Lu H, Gu Y, et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 2015;349:1314-7.
15. Cheng Y, Gao Z, Ye KH, et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat Commun 2022;13:645.
16. Böscke TS, Müller J, Bräuhaus D, Schröder U, Böttger U. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 2011;99:102903.
17. Müller J, Böscke TS, Schröder U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett 2012;12:4318-23.
18. Müller J, Schröder U, Böscke TS, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys 2011;110:114113.
19. Ji D, Cai S, Paudel TR, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019;570:87-90.
20. Guo Y, Goodge B, Zhang L, et al. Unit-cell-thick domain in free-standing quasi-two-dimensional ferroelectric material. Phys Rev Mater 2021;5:044403.
21. Shirodkar SN, Waghmare UV. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett 2014;112:157601.
22. Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity y in atomic-thick SnTe. Science 2016;353:274-8.
23. Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun 2017;8:14956.
24. Liu F, You L, Seyler KL, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun 2016;7:12357.
25. Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett 2015;15:3808-14.
26. Wang C, You L, Cobden D, Wang J. Towards two-dimensional van der Waals ferroelectrics. Nat Mater 2023;22:542-52.
27. Merz WJ. The electric and optical behavior of BaTiO3 single-domain crystals. Phys Rev 1949;76:1221-5.
28. von Hippel A. Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev Mod Phys 1950;22:221-37.
29. Stern EA. Character of order-disorder and displacive components in barium titanate. Phys Rev Lett 2004;93:037601.
30. Chaves A, Katiyar RS, Porto SPS. Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys Rev B 1974;10:3522-33.
31. Comes R, Lambert M, Guinier A. The chain structure of BaTiO3 and KNbO3. Solid State Commun 1968;6:715-9.
32. Buscaglia V, Buscaglia MT, Viviani M, et al. Raman and AFM piezoresponse study of dense BaTiO3 nanocrystalline ceramics. J Eur Ceram Soc 2005;25:3059-62.
33. Baskaran N, Ghule A, Bhongale C, Murugan R, Chang H. Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements. J Appl Phys 2002;91:10038-43.
36. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 2005;71:014113.
37. Lee HN, Nakhmanson SM, Chisholm MF, Christen HM, Rabe KM, Vanderbilt D. Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys Rev Lett 2007;98:217602.
38. Azuma M, Hojo H, Oka K, et al. Functional transition metal perovskite oxides with 6s2 lone pair activity stabilized by high-pressure synthesis. Annu Rev Mater Res 2021;51:329-49.
39. Benedek NA, Fennie CJ. Why are there so few perovskite ferroelectrics? J Phys Chem C 2013;117:13339-49.
40. Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater 2004;3:164-70.
41. Benedek NA, Fennie CJ. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys Rev Lett 2011;106:107204.
42. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature 2003;426:55-8.
43. Qiao H, Wang C, Choi WS, Park MH, Kim Y. Ultra-thin ferroelectrics. Mater Sci Eng R Rep 2021;145:100622.
44. Ascher E, Schmid H, Tar D. Dielectric properties of boracites and evidence for ferroelectricity. Solid State Commun 1964;2:45-9.
45. Schmid H, Rieder H, Ascher E. Magnetic susceptibilities of some 3D transition metal boracites. Solid State Commun 1965;3:327-30.
46. McQuaid RGP, Campbell MP, Whatmore RW, Kumar A, Gregg JM. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat Commun 2017;8:15105.
47. Dowty E, Clark JR. Atomic displacements in ferroelectric trigonal and orthorhombic boracite structures. Solid State Commun 1972;10:543-8.
48. Zimmermann A, Bollmann W, Schmid H. Observations of ferroelectric domains in boracites. Phys Stat Sol 1970;3:707-20.
49. Guy JGM, Cochard C, Aguado-Puente P, et al. Anomalous motion of charged domain walls and associated negative capacitance in copper-chlorine boracite. Adv Mater 2021;33:e2008068.
50. Bousquet E, Dawber M, Stucki N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 2008;452:732-6.
51. Kumagai Y, Spaldin NA. Structural domain walls in polar hexagonal manganites. Nat Commun 2013;4:1540.
52. Yoshida S, Fujita K, Akamatsu H, et al. Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Adv Funct Mater 2018;28:1801856.
53. Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans 2015;44:10543-58.
54. Roh CJ, Jung MC, Kim JR, et al. Polar metal phase induced by oxygen octahedral network relaxation in oxide thin films. Small 2020;16:e2003055.
55. Jeong SG, Han G, Song S, et al. Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring. Adv Sci 2020;7:2001643.
56. Geng WR, Guo XW, Zhu YL, et al. Oxygen octahedral coupling mediated ferroelectric-antiferroelectric phase transition based on domain wall engineering. Acta Mater 2020;198:145-52.
57. Han H, Zhang Q, Li W, et al. Interfacial oxygen octahedral coupling-driven robust ferroelectricity in epitaxial Na0.5Bi0.5TiO3 thin films. Research 2023;6:0191.
58. Sando D, Barthélémy A, Bibes M. BiFeO3 epitaxial thin films and devices: past, present and future. J Phys Condens Matter 2014;26:473201.
59. Jang BK, Lee JH, Chu K, et al. Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nat Phys 2017;13:189-96.
60. Chen D, Nelson CT, Zhu X, et al. A strain-driven antiferroelectric-to-ferroelectric phase transition in La-doped BiFeO3 thin films on Si. Nano Lett 2017;17:5823-9.
61. Chu K, Jang BK, Sung JH, et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat Nanotechnol 2015;10:972-9.
62. Glazer AM. The classification of tilted octahedra in perovskites. Acta Cryst B 1972;B28:3384-92.
63. Han MJ, Wang YJ, Ma DS, et al. Coexistence of rhombohedral and orthorhombic phases in ultrathin BiFeO3 films driven by interfacial oxygen octahedral coupling. Acta Mater 2018;145:220-6.
64. Kim YM, Kumar A, Hatt A, et al. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv Mater 2013;25:2497-504.
65. Yuan Y, Lu Y, Stone G, et al. Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites. Nat Commun 2018;9:5220.
66. Yashima M, Ali R. Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ion 2009;180:120-6.
67. Van Aert S, Turner S, Delville R, Schryvers D, Van Tendeloo G, Salje EKH. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv Mater 2012;24:523-7.
68. Yokota H, Usami H, Haumont R, et al. Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope. Phys Rev B 2014;89:144109.
69. Eklund CJ, Fennie CJ, Rabe KM. Strain-induced ferroelectricity in orthorhombic CaTiO3 from first principles. Phys Rev B 2009;79:220101.
70. Kim JR, Jang J, Go KJ, et al. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nat Commun 2020;11:4944.
71. Mitra C, Meyer T, Lee HN, Reboredo FA. Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential. J Chem Phys 2014;141:084710.
72. Fuller CA, Berrod Q, Frick B, et al. Brownmillerite-type Sr2ScGaO5 oxide ion conductor: local structure, phase transition, and dynamics. Chem Mater 2019;31:7395-404.
73. Auckett JE, Studer AJ, Pellegrini E, et al. Combined experimental and computational study of oxide ion conduction dynamics in
74. Macchesney JB, Sherwood RC, Potter JF. Electric and magnetic properties of the strontium ferrates. J Chem Phys 1965;43:1907-13.
75. Khare A, Lee J, Park J, et al. Directing oxygen vacancy channels in SrFeO2.5 epitaxial thin films. ACS Appl Mater Interfaces 2018;10:4831-7.
76. Young J, Rondinelli JM. Crystal structure and electronic properties of bulk and thin film brownmillerite oxides. Phys Rev B 2015;92:174111.
77. Lim J, Yu J. Role of oxygen vacancy in the spin-state change and magnetic ordering in SrCoO3-δ. Phys Rev B 2018;98:085106.
78. Kang KT, Roh CJ, Lim J, et al. A room-temperature ferroelectric ferromagnet in a 1D tetrahedral chain network. Adv Mater 2019;31:e1808104.
79. Tian H, Kuang XY, Mao AJ, et al. Novel type of ferroelectricity in brownmillerite structures: a first-principles study. Phys Rev Mater 2018;2:084402.
80. Taniguchi H, Kuwabara A, Kim J, et al. Ferroelectricity driven by twisting of silicate tetrahedral chains. Angew Chem Int Ed 2013;52:8088-92.
81. Seol D, Taniguchi H, Hwang JY, et al. Strong anisotropy of ferroelectricity in lead-free bismuth silicate. Nanoscale 2015;7:11561-5.
82. Adams DM, Leonard S, Russell DR, Cernik RJ. X-ray diffraction study of Hafnia under high pressure using synchrotron radiation. J Phys Chem Solids 1991;52:1181-6.
83. Sang X, Grimley ED, Schenk T, Schroeder U, Lebeau JM. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett 2015;106:162905.
84. Smith SW, Kitahara AR, Rodriguez MA, Henry MD, Brumbach MT, Ihlefeld JF. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films. Appl Phys Lett 2017;110:072901.
85. Lee HJ, Lee M, Lee K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020;369:1343-7.
87. Guo EJ, Roth R, Herklotz A, Hesse D, Dörr K. Ferroelectric 180° domain wall motion controlled by biaxial strain. Adv Mater 2015;27:1615-8.
88. Cruz MP, Chu YH, Zhang JX, et al. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys Rev Lett 2007;99:217601.
89. Katayama K, Shimizu T, Sakata O, et al. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films. J Appl Phys 2016;119:134101.
90. Gradauskaite E, Hunnestad KA, Meier QN, Meier D, Trassin M. Ferroelectric domain engineering using structural defect ordering. Chem Mater 2022;34:6468-75.
91. Li L, Jokisaari JR, Zhang Y, et al. Control of domain structures in multiferroic thin films through defect engineering. Adv Mater 2018;30:e1802737.
92. Baek SH, Jang HW, Folkman CM, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater 2010;9:309-14.
93. Nelson CT, Winchester B, Zhang Y, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett 2011;11:828-34.
94. Chouprik A, Spiridonov M, Zarubin S, et al. Wake-up in a Hf0.5Zr0.5O2 film: a cycle-by-cycle emergence of the remnant polarization via the domain depinning and the vanishing of the anomalous polarization switching. ACS Appl Electron Mater 2019;1:275-87.
95. Choudhury S, Li Y, Odagawa N, et al. The influence of 180° ferroelectric domain wall width on the threshold field for wall motion. J Appl Phys 2008;104:084107.
96. Zhang Q, Tan G, Gu L, et al. Direct observation of multiferroic vortex domains in YMnO3. Sci Rep 2013;3:2741.
97. Seidel J, Martin LW, He Q, et al. Conduction at domain walls in oxide multiferroics. Nat Mater 2009;8:229-34.
98. Rojac T, Bencan A, Drazic G, et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat Mater 2017;16:322-7.
99. Aschauer U, Pfenninger R, Selbach SM, Grande T, Spaldin NA. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys Rev B 2013;88:054111.
100. Farokhipoor S, Noheda B. Conduction through 71° domain walls in BiFeO3 thin films. Phys Rev Lett 2011;107:127601.
101. Sluka T, Tagantsev AK, Bednyakov P, Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat Commun 2013;4:1808.
102. Mundy JA, Schaab J, Kumagai Y, et al. Functional electronic inversion layers at ferroelectric domain walls. Nat Mater 2017;16:622-7.
103. Crassous A, Sluka T, Tagantsev AK, Setter N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat Nanotechnol 2015;10:614-8.
104. Oh YS, Luo X, Huang FT, Wang Y, Cheong SW. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat Mater 2015;14:407-13.
105. Lee WM, Sung JH, Chu K, et al. Spatially resolved photodetection in leaky ferroelectric BiFeO3. Adv Mater 2012;24:OP49-53.
106. Sluka T, Tagantsev AK, Damjanovic D, Gureev M, Setter N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat Commun 2012;3:748.
107. McConville JPV, Lu H, Wang B, et al. Ferroelectric domain wall memristor. Adv Funct Mater 2020;30:2000109.
108. Liu Z, Wang H, Li M, et al. In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature 2023;613:656-61.
109. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature 2002;419:818-20.
110. Choi T, Horibe Y, Yi HT, Choi YJ, Wu W, Cheong SW. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat Mater 2010;9:253-8.
111. Cheng S, Li J, Han MG, et al. Topologically allowed nonsixfold vortices in a sixfold multiferroic material: observation and classification. Phys Rev Lett 2017;118:145501.
112. Du Y, Wang XL, Chen DP, et al. Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Appl Phys Lett 2011;99:252107.
113. Matsumoto T, Ishikawa R, Tohei T, et al. Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal YMnO3 single crystal visualized by a spherical aberration-corrected STEM. Nano Lett 2013;13:4594-601.
114. Småbråten DR, Meier QN, Skjærvø SH, Inzani K, Meier D, Selbach SM. Charged domain walls in improper ferroelectric hexagonal manganites and gallates. Phys Rev Mater 2018;2:114405.
115. Xu X, Huang FT, Qi Y, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat Mater 2021;20:826-32.
116. Lee TY, Lee K, Lim HH, et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl Mater Interfaces 2019;11:3142-9.
117. Grimley ED, Schenk T, Mikolajick T, Schroeder U, Lebeau JM. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv Mater Inter 2018;5:1701258.
118. Ding W, Zhang Y, Tao L, Yang Q, Zhou Y. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study. Acta Mater 2020;196:556-64.
119. Chen S, Yuan S, Hou Z, et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv Mater 2021;33:e2000857.
120. Tang YL, Zhu YL, Ma XL, et al. Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015;348:547-51.
121. Yadav AK, Nelson CT, Hsu SL, et al. Observation of polar vortices in oxide superlattices. Nature 2016;530:198-201.
122. Das S, Tang YL, Hong Z, et al. Observation of room-temperature polar skyrmions. Nature 2019;568:368-72.
123. Wang YJ, Feng YP, Zhu YL, et al. Polar meron lattice in strained oxide ferroelectrics. Nat Mater 2020;19:881-6.
124. Luk'yanchuk I, Tikhonov Y, Razumnaya A, Vinokur VM. Hopfions emerge in ferroelectrics. Nat Commun 2020;11:2433.
125. Naumov II, Bellaiche L, Fu H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 2004;432:737-40.
126. Fu H, Bellaiche L. Ferroelectricity in barium titanate quantum dots and wires. Phys Rev Lett 2003;91:257601.
127. Choi KJ, Biegalski M, Li YL, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 2004;306:1005-9.
128. Lee JH, Kim HJ, Ryoo E, et al. Thickness-driven morphotropic phase transition in metastable ferroelectric CaTiO3 films. Adv Elect Mater 2022;8:2101398.
129. Ahn CH, Rabe KM, Triscone JM. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 2004;303:488-91.
130. Stengel M, Spaldin NA. Origin of the dielectric dead layer in nanoscale capacitors. Nature 2006;443:679-82.
131. Chang LW, Alexe M, Scott JF, Gregg JM. Settling the “dead layer” debate in nanoscale capacitors. Adv Mater 2009;21:4911-4.
132. Saad MM, Baxter P, Bowman RM, Gregg JM, Morrison FD, Scott JF. Intrinsic dielectric response in ferroelectric nano-capacitors. J Phys Condens Matter 2004;16:L451-6.
133. Stengel M, Vanderbilt D, Spaldin NA. Enhancement of ferroelectricity at metal-oxide interfaces. Nat Mater 2009;8:392-7.
134. Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 2003;422:506-9.
135. Gerra G, Tagantsev AK, Setter N, Parlinski K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys Rev Lett 2006;96:107603.
136. Streiffer SK, Eastman JA, Fong DD, et al. Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys Rev Lett 2002;89:067601.
137. Gao P, Zhang Z, Li M, et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat Commun 2017;8:15549.
138. Zeches RJ, Rossell MD, Zhang JX, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 2009;326:977-80.
139. Li L, Cheng X, Blum T, et al. Observation of strong polarization enhancement in ferroelectric tunnel junctions. Nano Lett 2019;19:6812-8.
140. Wang H, Liu ZR, Yoong HY, et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat Commun 2018;9:3319.
141. Sai N, Fennie CJ, Demkov AA. Absence of critical thickness in an ultrathin improper ferroelectric film. Phys Rev Lett 2009;102:107601.
142. Sheng Z, Ogawa N, Ogimoto Y, Miyano K. Multiple stable states with in-plane anisotropy in ultrathin YMnO3 films. Adv Mater 2010;22:5507-11.
143. Yun Y, Buragohain P, Thind AS, et al. Spontaneous polarization in an ultrathin improper-ferroelectric/dielectric bilayer in a capacitor structure at cryogenic temperatures. Phys Rev Appl 2022;18:034071.
144. Yang Q, Hu J, Fang YW, et al. Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science 2023;379:1218-24.
145. Zhang Z, Hsu SL, Stoica VA, et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 with metallic pyrochlore oxide electrodes. Adv Mater 2021;33:e2105655.
146. Yun Y, Buragohain P, Li M, et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat Mater 2022;21:903-9.
147. Cheema SS, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020;580:478-82.
148. Cheema SS, Shanker N, Hsu SL, et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 2022;376:648-52.
149. Kittel C. Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 1946;70:965-71.
150. Prosandeev S, Lisenkov S, Bellaiche L. Kittel law in BiFeO3 ultrathin films: a first-principles-based study. Phys Rev Lett 2010;105:147603.
151. Catalan G, Seidel J, Ramesh R, Scott JF. Domain wall nanoelectronics. Rev Mod Phys 2012;84:119-56.
152. Schilling A, Adams TB, Bowman RM, Gregg JM, Catalan G, Scott JF. Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys Rev B 2006;74:024115.
153. Feigl L, Yudin P, Stolichnov I, et al. Controlled stripes of ultrafine ferroelectric domains. Nat Commun 2014;5:4677.
154. Wei XK, Jia CL, Sluka T, Wang BX, Ye ZG, Setter N. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat Commun 2016;7:12385.
155. De Luca G, Rossell MD, Schaab J, Viart N, Fiebig M, Trassin M. Domain wall architecture in tetragonal ferroelectric thin films. Adv Mater 2017;29:1605145.
156. Cherifi-Hertel S, Bulou H, Hertel R, et al. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat Commun 2017;8:15768.
157. Han MG, Zhu Y, Wu L, et al. Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite. Adv Mater 2013;25:2415-21.
158. Schaab J, Skjærvø SH, Krohns S, et al. Electrical half-wave rectification at ferroelectric domain walls. Nat Nanotechnol 2018;13:1028-34.
159. Holtz ME, Shapovalov K, Mundy JA, et al. Topological defects in hexagonal manganites: inner structure and emergent electrostatics. Nano Lett 2017;17:5883-90.
160. Han M, Wang C, Niu K, et al. Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite. Nat Commun 2022;13:5903.
161. Hirai K, Aso R, Ozaki Y, et al. Melting of oxygen vacancy order at oxide-heterostructure interface. ACS Appl Mater Interfaces 2017;9:30143-8.
162. Young J, Moon EJ, Mukherjee D, et al. Polar oxides without inversion symmetry through vacancy and chemical order. J Am Chem Soc 2017;139:2833-41.
163. Kim S, Hwang G, Song K, et al. Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Energy 2019;58:78-84.
164. Lu H, Bark CW, Esque de los Ojos D, et al. Mechanical writing of ferroelectric polarization. Science 2012;336:59-61.
165. Lu H, Tan Y, Richarz L, et al. Electromechanics of domain walls in uniaxial ferroelectrics. Adv Funct Mater 2023;33:2213684.
166. Buragohain P, Erickson A, Mimura T, Shimizu T, Funakubo H, Gruverman A. Effect of film microstructure on domain nucleation and intrinsic switching in ferroelectric Y:HfO2 thin film capacitors. Adv Funct Mater 2022;32:2108876.
167. Gruverman A, Alexe M, Meier D. Piezoresponse force microscopy and nanoferroic phenomena. Nat Commun 2019;10:1661.
168. Christman JA, Woolcott RR, Kingon AI, Nemanich RJ. Piezoelectric measurements with atomic force microscopy. Appl Phys Lett 1998;73:3851-3.
169. Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ. Local polarization dynamics in ferroelectric materials. Rep Prog Phys 2010;73:056502.
170. Jesse S, Baddorf AP, Kalinin SV. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl Phys Lett 2006;88:062908.
171. Gruverman A, Wu D, Scott JF. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys Rev Lett 2008;100:097601.
172. Harnagea C, Alexe M, Hesse D, Pignolet A. Contact resonances in voltage-modulated force microscopy. Appl Phys Lett 2003;83:338-40.
173. Rodriguez BJ, Callahan C, Kalinin SV, Proksch R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 2007;18:475504.
174. Jesse S, Kalinin SV, Proksch R, Baddorf AP, Rodriguez BJ. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 2007;18:435503.
175. Choi HJ, Jang J, Jung SY, et al. Thermal stress-assisted annealing to improve the crystalline quality of an epitaxial YSZ buffer layer on Si. J Mater Chem C 2022;10:10027-36.
176. Zhang Y, Tan Y, Sando D, et al. Controlled nucleation and stabilization of ferroelectric domain wall patterns in epitaxial (110) bismuth ferrite heterostructures. Adv Funct Mater 2020;30:2003571.
177. Gao P, Nelson CT, Jokisaari JR, et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nat Commun 2011;2:591.
178. Han MG, Marshall MS, Wu L, et al. Interface-induced nonswitchable domains in ferroelectric thin films. Nat Commun 2014;5:4693.
179. Lee JK, Shin GY, Song K, et al. Direct observation of asymmetric domain wall motion in a ferroelectric capacitor. Acta Mater 2013;61:6765-77.
180. Chen Z, Li F, Huang Q, et al. Giant tuning of ferroelectricity in single crystals by thickness engineering. Sci Adv 2020;6:eabc7156.
181. Lee H, Okello OFN, Kim GY, Song K, Choi SY. TEM sample preparation using micro-manipulator for in-situ MEMS experiment. Appl Microsc 2021;51:8.
182. Vogel A, Sarott MF, Campanini M, Trassin M, Rossell MD. Monitoring electrical biasing of Pb(Zr0.2Ti0.8)O3 ferroelectric thin films in situ by DPC-STEM imaging. Materials 2021;14:4749.
183. Zintler A, Kunz U, Pivak Y, et al. FIB based fabrication of an operative Pt/HfO2/TiN device for resistive switching inside a transmission electron microscope. Ultramicroscopy 2017;181:144-9.
184. Nukala P, Ahmadi M, Wei Y, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 2021;372:630-5.
185. Huang Q, Chen Z, Cabral MJ, et al. Direct observation of nanoscale dynamics of ferroelectric degradation. Nat Commun 2021;12:2095.
186. Cai S, Guo C, Niu B, et al. In situ observation of domain wall lateral creeping in a ferroelectric capacitor. Adv Funct Mater 2023;33:2304606.
187. Condurache O, Dražić G, Rojac T, et al. Atomic-level response of the domain walls in bismuth ferrite in a subcoercive-field regime. Nano Lett 2023;23:750-6.
188. Du H, Groh C, Jia CL, et al. Multiple polarization orders in individual twinned colloidal nanocrystals of centrosymmetric HfO2. Matter 2021;4:986-1000.
189. Jia CL, Urban KW, Alexe M, Hesse D, Vrejoiu I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 2011;331:1420-3.
190. Jia CL, Jin L, Wang D, et al. Nanodomains and nanometer-scale disorder in multiferroic bismuth ferrite single crystals. Acta Mater 2015;82:356-68.
191. Hwang SY, Lee GJ, Qi Y, et al. Enhanced thermal stability by short-range ordered ferroelectricity in K0.5Na0.5NbO3-based piezoelectric oxides. Mater Horiz 2023;10:2656-66.
192. Kim GY, Chu K, Sung KD, et al. Disordered ferroelectricity in the PbTiO3/SrTiO3 superlattice thin film. APL Mater 2017;5:066104.
193. Gong FH, Tang YL, Wang YJ, et al. Absence of critical thickness for polar skyrmions with breaking the Kittel's law. Nat Commun 2023;14:3376.
194. Sun Y, Abid AY, Tan C, et al. Subunit cell-level measurement of polarization in an individual polar vortex. Sci Adv 2019;5:eaav4355.
195. Kim HP, Lee GJ, Jeong HY, et al. Symmetry-bridging phase as the mechanism for the large strains in relaxor-PbTiO3 single crystals. J Eur Ceram Soc 2019;39:3327-31.
196. Yoon H, Choi M, Lim TW, et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat Mater 2016;15:1113-9.
197. Findlay SD, Kohno Y, Cardamone LA, Ikuhara Y, Shibata N. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy. Ultramicroscopy 2014;136:31-41.
198. Liu C, Xu J, Zheng T, et al. Decoding the atomic-scale structural origin of large strain performance in BNT-6BT based relaxor ferroelectrics. J Phys Chem Lett 2023;14:6234-40.
199. Chen F, Qian H, Sun X, et al. Atomic-scale insight into the epitaxial growth mechanism and interfacial coupling of BNT film prepared by hydrothermal synthesis. J Mater Sci Technol 2023;164:198-204.
200. Campanini M, Erni R, Yang CH, Ramesh R, Rossell MD. Periodic giant polarization gradients in doped BiFeO3 thin films. Nano Lett 2018;18:717-24.
201. Yun S, Song K, Chu K, et al. Flexopiezoelectricity at ferroelastic domain walls in WO3 films. Nat Commun 2020;11:4898.
202. Gao W, Addiego C, Wang H, et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 2019;575:480-4.
203. Huyan H, Addiego C, Yan X, et al. Direct observation of polarization-induced two-dimensional electron/hole gases at ferroelectric-insulator interface. NPJ Quantum Mater 2021;6:88.
204. Campanini M, Trassin M, Ederer C, Erni R, Rossell MD. Buried in-plane ferroelectric domains in Fe-doped single-crystalline aurivillius thin films. ACS Appl Electron Mater 2019;1:1019-28.
205. Shibata N, Findlay SD, Kohno Y, Sawada H, Kondo Y, Ikuhara Y. Differential phase-contrast microscopy at atomic resolution. Nat Phys 2012;8:611-5.
206. Weymann C, Cherifi-hertel S, Lichtensteiger C, et al. Non-Ising domain walls in c-phase ferroelectric lead titanate thin films. Phys Rev B 2022;106:L241404.
207. Calderon S 5th, Hayden J, Baksa SM, et al. Atomic-scale polarization switching in wurtzite ferroelectrics. Science 2023;380:1034-8.
208. Han J, Go KJ, Jang J, Yang S, Choi SY. Materials property mapping from atomic scale imaging via machine learning based sub-pixel processing. NPJ Comput Mater 2022;8:196.
209. Galindo PL, Kret S, Sanchez AM, et al. The peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 2007;107:1186-93.
210. Nord M, Vullum PE, MacLaren I, Tybell T, Holmestad R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv Struct Chem Imaging 2017;3:9.
211. Zhang Q, Zhang LY, Jin CH, Wang YM, Lin F. CalAtom: a software for quantitatively analysing atomic columns in a transmission electron microscope image. Ultramicroscopy 2019;202:114-20.
212. Wang Y, Salzberger U, Sigle W, Eren Suyolcu Y, van Aken PA. Oxygen octahedra picker: a software tool to extract quantitative information from STEM images. Ultramicroscopy 2016;168:46-52.
214. Wei DY, Yin CC. An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data. J Struct Biol 2010;172:211-8.
215. Mevenkamp N, Binev P, Dahmen W, Voyles PM, Yankovich AB, Berkels B. Poisson noise removal from high-resolution STEM images based on periodic block matching. Adv Struct Chem Imag 2015;1:3.
216. Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 2007;16:2080-95.
217. Kim YH, Yang SH, Jeong M, et al. Hybrid deep learning crystallographic mapping of polymorphic phases in polycrystalline