REFERENCES

1. Song Y, Shi N, Deng S, Xing X, Chen J. Negative thermal expansion in magnetic materials. Prog Mater Sci 2021;121:100835.

2. Song Y, Chen J, Liu X, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds. J Am Chem Soc 2018;140:602-5.

3. Song Y, Xu M, Zheng X, et al. A new method to enhance the magnetocaloric effect in (Sc,Ti)Fe2 via magnetic phase separation. J Mater Sci Technol 2023;147:102-11.

4. Stern-Taulats E, Planes A, Lloveras P, et al. Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B 2014;89:214105.

5. Aznar A, Lloveras P, Kim JY, et al. Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03. Adv Mater 2019;31:e1903577.

6. Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat Nanotechnol 2016;11:231-41.

7. Awschalom DD, Flatté ME. Challenges for semiconductor spintronics. Nat Phys 2007;3:153-9.

8. Palstra TTM, Mydosh JA, Nieuwenhuys GJ, van der Kraan AM, Buschow KHJ. Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe, Si)13 compounds. J Magn Magn Mater 1983;36:290-6.

9. Palstra TTM, Werij HGC, Nieuwenhuys GJ, Mydosh JA, Boer FRD, Buschow KHJ. Metamagnetic transitions in cubic La(FexAl1-x)13 intermetallic. J Phys F Met Phys 1984;14:1961-6.

10. Yamada H, Inoue J, Shimizu M. Electronic structure and magnetic properties of the cubic Laves phase compounds ACo2 (A=Sc, Ti, Zr, Lu and Hf) and ScNi2. J Phys F Met Phys 1985;15:169-80.

11. Paul-Boncour V, Bessais L. Tuning the magnetocaloric properties of the La(Fe,Si)13 compounds by chemical substitution and light element insertion. Magnetochemistry 2021;7:13.

12. Liu J, He C, Zhang M, Yan A. A systematic study of the microstructure, phase formation and magnetocaloric properties in off-stoichiometric La-Fe-Si alloys. Acta Mater 2016;118:44-53.

13. Niitsu K, Kainuma R. Phase equilibria in the Fe-La-Si ternary system. Intermetallics 2012;20:160-9.

14. Raghavan V. Fe-La-Si (iron-lanthanum-silicon). J Phase Equilib Diff 2001;22:158-9.

15. Song Y, Huang R, Zhang J, et al. The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13. Sci China Mater 2021;64:1238-45.

16. Song Y, Huang R, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe,Al)13. Chem Mater 2020;32:7535-41.

17. Shen BG, Hu FX, Dong QY, Sun JR. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe,Al)13-based compounds. Chin Phys B 2013;22:017502.

18. de Medeiros Jr. LG, de Oliveira NA. Magnetocaloric effect in La(Fex,Si1-x)13 doped with hydrogen and under external pressure. J Alloys Compd 2006;424:41-5.

19. Li S, Huang R, Zhao Y, Wang W, Han Y, Li L. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds. Adv Funct Mater 2017;27:1604195.

20. Rosca M, Balli M, Fruchart D, et al. Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds. J Alloys Compd 2010;490:50-5.

21. Phejar M, Paul-Boncour V, Bessais L. Investigation on structural and magnetocaloric properties of LaFe13-xSix(H,C)y compounds. J Solid State Chem 2016;233:95-102.

22. Niitsu K, Fujieda S, Fujita A, Kainuma R. Microstructure and magnetic properties of as-quenched cubic and tetragonal La(Fe1-xSix)13 compounds. J Alloys Compd 2013;578:220-7.

23. Zhao Y, Huang R, Li S, et al. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1−xCox)11.4Al1.6 compounds. Phys Chem Chem Phys 2016;18:20276-80.

24. Liu J, Gong Y, Wang J, et al. Realization of zero thermal expansion in La(Fe,Si)13-based system with high mechanical stability. Mater Des 2018;148:71-7.

25. Li W, Huang R, Wang W, et al. Low-temperature negative thermal expansion property of Mn doped La(Fe,Si)13 compounds. J Alloys Compd 2015;628:308-10.

26. Yamada H. Metamagnetic transition and susceptibility maximum in an itinerant-electron system. Phys Rev B Condens Matter 1993;47:11211-9.

27. Guillaume CE. Recherches sur les aciers au nickel. J Phys Theor Appl 1898;7:262-74.

28. Yokoyama T. Thermal expansion of FeNi Invar and zinc-blende CdTe from the view point of local structure. Microstructures 2021;1:2021003.

29. Sun Y, Cao Y, Ren Y, et al. Structure, magnetism and low thermal expansion in Tb1-xErxCo2Mny intermetallic compounds. Microstructures 2023;3:2023028.

30. Zhou H, Liu Y, Huang R, et al. Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability. Microstructures 2022;2:2022018.

31. Huang R, Liu Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J Am Chem Soc 2013;135:11469-72.

32. Li W, Huang R, Wang W, et al. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds. Phys Chem Chem Phys 2015;17:5556-60.

33. Pang X, Song Y, Shi N, Xu M, Zhou C, Chen J. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites. Compos Part B Eng 2022;238:109883.

34. Hunter D, Osborn W, Wang K, et al. Giant magnetostriction in annealed Co1-xFex thin-films. Nat Commun 2011;2:518.

35. Chopra HD, Wuttig M. Non-joulian magnetostriction. Nature 2015;521:340-3.

36. Lee EW. Magnetostriction and magnetomechanical effects. Rep Prog Phys 1955;18:184-229.

37. Fujita A, Akamatsu Y, Fukamichi K. Itinerant electron metamagnetic transition in La(FexSi1-x)13 intermetallic compounds. J Appl Phys 1999;85:4756-8.

38. Fujieda S, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y. Giant isotropic magnetostriction of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy compounds. Appl Phys Lett 2001;79:653-5.

39. Ghorbani Zavareh M, Skourski Y, Skokov KP, et al. Direct measurement of the magnetocaloric effect in La(Fe, Si, Co)13 compounds in pulsed magnetic fields. Phys Rev Appl 2017;8:014037.

40. Abdulkadirova NZ, Gamzatov AG, Kamilov KI, et al. Magnetostriction and magnetocaloric properties of LaFe11.1Mn0.1Co0.7Si1.1 alloy: direct and indirect measurements. J Alloys Compd 2022;929:167348.

41. Clark AE, Belson HS. Giant room-temperature magnetostrictions in TbFe2 and DyFe2. Phys Rev B 1972;5:3642-4.

42. Franco V, Blázquez J, Ipus J, Law J, Moreno-ramírez L, Conde A. Magnetocaloric effect: from materials research to refrigeration devices. Prog Mater Sci 2018;93:112-232.

43. Reis MS. Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: review, trends and perspectives. Coord Chem Rev 2020;417:213357.

44. Shen BG, Sun JR, Hu FX, Zhang HW, Cheng ZH. Recent progress in exploring magnetocaloric materials. Adv Mater 2009;21:4545-64.

45. Hu FX, Shen BG, Sun JR, Cheng ZH, Zhang XX. Magnetic entropy change in La(Fe0.98Co0.02)11.7Al1.3. J Phys Condens Matter 2000;12:L691.

46. Hu FX, Shen BG, Sun JR, Zhang XX. Great magnetic entropy change in La(Fe, M)13 (M = Si, Al) with Co doping. Chin Phys 2000;9:550.

47. Fujieda S, Fujita A, Fukamichi K. Large magnetocaloric effects in NaZn13-type La(FexSi1-x)13 compounds and their hydrides composed of icosahedral clusters. Sci Technol Adv Mater 2003;4:339-46.

48. Zhou HB, Yu ZB, Hu FX, et al. Emergence of Invar effect with excellent mechanical property by electronic structure modulation in LaFe11.6-xCoxSi1.4 magnetocaloric materials. Acta Mater 2023;260:119312.

49. Zhang H, Hu FX, Sun JR, Shen BG. Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La(Fe, Si)13-based compounds. Sci China Phys Mech Astron 2013;56:2302-11.

50. Löwe K, Liu J, Skokov K, et al. The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13. Acta Mater 2012;60:4268-76.

51. Mayer C, Dubrez A, Pierronnet M, Vikner P. Towards the large scale production of (La1-zCez)(Fe1-x-yMnySix)13Hn products for room temperature refrigeration. Phys Status Solidi C 2014;11:1059-63.

52. Moreno-Ramírez LM, Romero-Muñiz C, Law JY, et al. Tunable first order transition in La(Fe,Cr,Si)13 compounds: retaining magnetocaloric response despite a magnetic moment reduction. Acta Mater 2019;175:406-14.

53. Dong QY, Zhang HW, Sun JR, Shen BG. Effect of Si doping on the magnetic properties and magnetic entropy changes in the LaFe11.4Al1.6 intermetallic compound. J Phys Condens Matter 2008;20:135205.

54. Zou JD, Shen BG, Gao B, Shen J, Sun JR. The magnetocaloric effect of LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5, and Ni43Mn46Sn11 compounds in the vicinity of the first-order phase transition. Adv Mater 2009;21:693-6.

55. Liu GJ, Sun JR, Shen J, et al. Determination of the entropy changes in the compounds with a first-order magnetic transition. Appl Phys Lett 2007;90:032507.

56. Lyubina J, Nenkov K, Schultz L, Gutfleisch O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx. Phys Rev Lett 2008;101:177203.

57. Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength. Adv Mater 2017;29:1603607.

58. Carvalho AMG, Imamura W, Usuda EO, Bom NM. Giant room-temperature barocaloric effects in PDMS rubber at low pressures. Eur Polym J 2018;99:212-21.

59. Li B, Kawakita Y, Ohira-Kawamura S, et al. Colossal barocaloric effects in plastic crystals. Nature 2019;567:506-10.

60. Lloveras P, Aznar A, Barrio M, et al. Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nat Commun 2019;10:1803.

61. Lloveras P, Stern-Taulats E, Barrio M, et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 2015;6:8801.

62. Aznar A, Lloveras P, Romanini M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat Commun 2017;8:1851.

63. Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 2015;14:73-8.

64. Hao J, Hu F, Wang JT, et al. Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-type structure. Chem Mater 2020;32:1807-18.

65. Mañosa L, González-Alonso D, Planes A, et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat Commun 2011;2:595.

66. Liu Y, Zheng X, Liang F, et al. Large barocaloric effect in intermetallic La1.2Ce0.8Fe11Si2H1.86 materials driven by low pressure. NPG Asia Mater 2022;14:30.

67. Li T, Deng S, Qi H, et al. High-temperature ferroic glassy states in SrTiO3-based thin films. Phys Rev Lett 2023;131:246801.

68. Gokana MR, Wu CM, Motora KG, Qi JY, Yen WT. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J Power Sources 2022;536:231524.

69. Rani GM, Ghoreishian SM, Ranjith KS, et al. High roughness induced pearl necklace-like ZIF-67@PAN fiber-based triboelectric nanogenerators for mechanical energy harvesting. Adv Mater Technol 2023;8:2300685.

70. Rani GM, Wu CM, Motora KG, Umapathi R, Jose CRM. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 2023;108:108211.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/