REFERENCES
1. Song Y, Shi N, Deng S, Xing X, Chen J. Negative thermal expansion in magnetic materials. Prog Mater Sci 2021;121:100835.
2. Song Y, Chen J, Liu X, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds. J Am Chem Soc 2018;140:602-5.
3. Song Y, Xu M, Zheng X, et al. A new method to enhance the magnetocaloric effect in (Sc,Ti)Fe2 via magnetic phase separation. J Mater Sci Technol 2023;147:102-11.
4. Stern-Taulats E, Planes A, Lloveras P, et al. Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B 2014;89:214105.
5. Aznar A, Lloveras P, Kim JY, et al. Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03. Adv Mater 2019;31:e1903577.
6. Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat Nanotechnol 2016;11:231-41.
8. Palstra TTM, Mydosh JA, Nieuwenhuys GJ, van der Kraan AM, Buschow KHJ. Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe, Si)13 compounds. J Magn Magn Mater 1983;36:290-6.
9. Palstra TTM, Werij HGC, Nieuwenhuys GJ, Mydosh JA, Boer FRD, Buschow KHJ. Metamagnetic transitions in cubic La(FexAl1-x)13 intermetallic. J Phys F Met Phys 1984;14:1961-6.
10. Yamada H, Inoue J, Shimizu M. Electronic structure and magnetic properties of the cubic Laves phase compounds ACo2 (A=Sc, Ti, Zr, Lu and Hf) and ScNi2. J Phys F Met Phys 1985;15:169-80.
11. Paul-Boncour V, Bessais L. Tuning the magnetocaloric properties of the La(Fe,Si)13 compounds by chemical substitution and light element insertion. Magnetochemistry 2021;7:13.
12. Liu J, He C, Zhang M, Yan A. A systematic study of the microstructure, phase formation and magnetocaloric properties in off-stoichiometric La-Fe-Si alloys. Acta Mater 2016;118:44-53.
13. Niitsu K, Kainuma R. Phase equilibria in the Fe-La-Si ternary system. Intermetallics 2012;20:160-9.
15. Song Y, Huang R, Zhang J, et al. The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13. Sci China Mater 2021;64:1238-45.
16. Song Y, Huang R, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe,Al)13. Chem Mater 2020;32:7535-41.
17. Shen BG, Hu FX, Dong QY, Sun JR. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe,Al)13-based compounds. Chin Phys B 2013;22:017502.
18. de Medeiros Jr. LG, de Oliveira NA. Magnetocaloric effect in La(Fex,Si1-x)13 doped with hydrogen and under external pressure. J Alloys Compd 2006;424:41-5.
19. Li S, Huang R, Zhao Y, Wang W, Han Y, Li L. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds. Adv Funct Mater 2017;27:1604195.
20. Rosca M, Balli M, Fruchart D, et al. Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds. J Alloys Compd 2010;490:50-5.
21. Phejar M, Paul-Boncour V, Bessais L. Investigation on structural and magnetocaloric properties of LaFe13-xSix(H,C)y compounds. J Solid State Chem 2016;233:95-102.
22. Niitsu K, Fujieda S, Fujita A, Kainuma R. Microstructure and magnetic properties of as-quenched cubic and tetragonal La(Fe1-xSix)13 compounds. J Alloys Compd 2013;578:220-7.
23. Zhao Y, Huang R, Li S, et al. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1−xCox)11.4Al1.6 compounds. Phys Chem Chem Phys 2016;18:20276-80.
24. Liu J, Gong Y, Wang J, et al. Realization of zero thermal expansion in La(Fe,Si)13-based system with high mechanical stability. Mater Des 2018;148:71-7.
25. Li W, Huang R, Wang W, et al. Low-temperature negative thermal expansion property of Mn doped La(Fe,Si)13 compounds. J Alloys Compd 2015;628:308-10.
26. Yamada H. Metamagnetic transition and susceptibility maximum in an itinerant-electron system. Phys Rev B Condens Matter 1993;47:11211-9.
28. Yokoyama T. Thermal expansion of FeNi Invar and zinc-blende CdTe from the view point of local structure. Microstructures 2021;1:2021003.
29. Sun Y, Cao Y, Ren Y, et al. Structure, magnetism and low thermal expansion in Tb1-xErxCo2Mny intermetallic compounds. Microstructures 2023;3:2023028.
30. Zhou H, Liu Y, Huang R, et al. Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability. Microstructures 2022;2:2022018.
31. Huang R, Liu Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J Am Chem Soc 2013;135:11469-72.
32. Li W, Huang R, Wang W, et al. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds. Phys Chem Chem Phys 2015;17:5556-60.
33. Pang X, Song Y, Shi N, Xu M, Zhou C, Chen J. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites. Compos Part B Eng 2022;238:109883.
34. Hunter D, Osborn W, Wang K, et al. Giant magnetostriction in annealed Co1-xFex thin-films. Nat Commun 2011;2:518.
37. Fujita A, Akamatsu Y, Fukamichi K. Itinerant electron metamagnetic transition in La(FexSi1-x)13 intermetallic compounds. J Appl Phys 1999;85:4756-8.
38. Fujieda S, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y. Giant isotropic magnetostriction of itinerant-electron metamagnetic
39. Ghorbani Zavareh M, Skourski Y, Skokov KP, et al. Direct measurement of the magnetocaloric effect in La(Fe, Si, Co)13 compounds in pulsed magnetic fields. Phys Rev Appl 2017;8:014037.
40. Abdulkadirova NZ, Gamzatov AG, Kamilov KI, et al. Magnetostriction and magnetocaloric properties of LaFe11.1Mn0.1Co0.7Si1.1 alloy: direct and indirect measurements. J Alloys Compd 2022;929:167348.
41. Clark AE, Belson HS. Giant room-temperature magnetostrictions in TbFe2 and DyFe2. Phys Rev B 1972;5:3642-4.
42. Franco V, Blázquez J, Ipus J, Law J, Moreno-ramírez L, Conde A. Magnetocaloric effect: from materials research to refrigeration devices. Prog Mater Sci 2018;93:112-232.
43. Reis MS. Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: review, trends and perspectives. Coord Chem Rev 2020;417:213357.
44. Shen BG, Sun JR, Hu FX, Zhang HW, Cheng ZH. Recent progress in exploring magnetocaloric materials. Adv Mater 2009;21:4545-64.
45. Hu FX, Shen BG, Sun JR, Cheng ZH, Zhang XX. Magnetic entropy change in La(Fe0.98Co0.02)11.7Al1.3. J Phys Condens Matter 2000;12:L691.
46. Hu FX, Shen BG, Sun JR, Zhang XX. Great magnetic entropy change in La(Fe, M)13 (M = Si, Al) with Co doping. Chin Phys 2000;9:550.
47. Fujieda S, Fujita A, Fukamichi K. Large magnetocaloric effects in NaZn13-type La(FexSi1-x)13 compounds and their hydrides composed of icosahedral clusters. Sci Technol Adv Mater 2003;4:339-46.
48. Zhou HB, Yu ZB, Hu FX, et al. Emergence of Invar effect with excellent mechanical property by electronic structure modulation in LaFe11.6-xCoxSi1.4 magnetocaloric materials. Acta Mater 2023;260:119312.
49. Zhang H, Hu FX, Sun JR, Shen BG. Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of
50. Löwe K, Liu J, Skokov K, et al. The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13. Acta Mater 2012;60:4268-76.
51. Mayer C, Dubrez A, Pierronnet M, Vikner P. Towards the large scale production of (La1-zCez)(Fe1-x-yMnySix)13Hn products for room temperature refrigeration. Phys Status Solidi C 2014;11:1059-63.
52. Moreno-Ramírez LM, Romero-Muñiz C, Law JY, et al. Tunable first order transition in La(Fe,Cr,Si)13 compounds: retaining magnetocaloric response despite a magnetic moment reduction. Acta Mater 2019;175:406-14.
53. Dong QY, Zhang HW, Sun JR, Shen BG. Effect of Si doping on the magnetic properties and magnetic entropy changes in the
54. Zou JD, Shen BG, Gao B, Shen J, Sun JR. The magnetocaloric effect of LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5, and Ni43Mn46Sn11 compounds in the vicinity of the first-order phase transition. Adv Mater 2009;21:693-6.
55. Liu GJ, Sun JR, Shen J, et al. Determination of the entropy changes in the compounds with a first-order magnetic transition. Appl Phys Lett 2007;90:032507.
56. Lyubina J, Nenkov K, Schultz L, Gutfleisch O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx. Phys Rev Lett 2008;101:177203.
57. Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength. Adv Mater 2017;29:1603607.
58. Carvalho AMG, Imamura W, Usuda EO, Bom NM. Giant room-temperature barocaloric effects in PDMS rubber at low pressures. Eur Polym J 2018;99:212-21.
59. Li B, Kawakita Y, Ohira-Kawamura S, et al. Colossal barocaloric effects in plastic crystals. Nature 2019;567:506-10.
60. Lloveras P, Aznar A, Barrio M, et al. Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nat Commun 2019;10:1803.
61. Lloveras P, Stern-Taulats E, Barrio M, et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 2015;6:8801.
62. Aznar A, Lloveras P, Romanini M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat Commun 2017;8:1851.
63. Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 2015;14:73-8.
64. Hao J, Hu F, Wang JT, et al. Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in
65. Mañosa L, González-Alonso D, Planes A, et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat Commun 2011;2:595.
66. Liu Y, Zheng X, Liang F, et al. Large barocaloric effect in intermetallic La1.2Ce0.8Fe11Si2H1.86 materials driven by low pressure. NPG Asia Mater 2022;14:30.
67. Li T, Deng S, Qi H, et al. High-temperature ferroic glassy states in SrTiO3-based thin films. Phys Rev Lett 2023;131:246801.
68. Gokana MR, Wu CM, Motora KG, Qi JY, Yen WT. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J Power Sources 2022;536:231524.
69. Rani GM, Ghoreishian SM, Ranjith KS, et al. High roughness induced pearl necklace-like ZIF-67@PAN fiber-based triboelectric nanogenerators for mechanical energy harvesting. Adv Mater Technol 2023;8:2300685.