REFERENCES

1. Kim KH, Karpov I, Olsson RH 3rd, Jariwala D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat Nanotechnol 2023;18:422-41.

2. Ielmini D, Wong HP. In-memory computing with resistive switching devices. Nat Electron 2018;1:333-43.

3. Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron 2018;1:442-50.

4. Meena JS, Sze SM, Chand U, Tseng TY. Overview of emerging nonvolatile memory technologies. Nanoscale Res Lett 2014;9:526.

5. Mikolajick T, Schroeder U, Slesazeck S. The Past, the present, and the future of ferroelectric memories. IEEE Trans Electron Devices 2020;67:1434-43.

6. Yu T, He F, Zhao J, et al. Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci China Mater 2021;64:727-38.

7. Yan SA, Zhao W, Guo HX, et al. Impact of total ionizing dose irradiation on Pt/SrBi2Ta2O9/HfTaO/Si memory capacitors. Appl Phys Lett 2015;106:012901.

8. Mcadams H, Acklin R, Blake T, et al. A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J Solid-State Circ 2004;39:667-77.

9. Park MH, Kwon D, Schroeder U, Mikolajick T. Binary ferroelectric oxides for future computing paradigms. MRS Bull 2021;46:1071-9.

10. Schenk T, Mueller S. A new generation of memory devices enabled by ferroelectric hafnia and zirconia. In: 2023 IEEE International Memory Workshop (IMW); 2023 May 21-24; Monterey, United States. New York: IEEE; 2023. pp. 1-11.

11. Valasek J. Piezo-electric and allied phenomena in rochelle salt. Phys Rev 1921;17:475-81.

12. Seidel J, Martin LW, He Q, et al. Conduction at domain walls in oxide multiferroics. Nat Mater 2009;8:229-34.

13. Sun J, Jiang A, Sharma P. Ferroelectric domain wall memory and logic. ACS Appl Electron Mater 2023;5:4692-703.

14. Kroemer H. Quasi-electric fields and band offsets: teaching electrons new tricks. Int J Mod Phys B 2002;16:677-97.

15. Thong HC, Li Z, Lu JT, et al. Domain engineering in bulk ferroelectric ceramics via mesoscopic chemical inhomogeneity. Adv Sci 2022;9:e2200998.

16. Qiu C, Wang B, Zhang N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020;577:350-4.

17. Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J Appl Phys 2005;98:014109.

18. Hu X, Zhang Y, Zhu S. Nonlinear beam shaping in domain engineered ferroelectric crystals. Adv Mater 2020;32:e1903775.

19. Pan H, Ma J, Ma J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 2018;9:1813.

20. Bassiri-gharb N, Fujii I, Hong E, Trolier-mckinstry S, Taylor DV, Damjanovic D. Domain wall contributions to the properties of piezoelectric thin films. J Electroceram 2007;19:49-67.

21. Das S, Hong Z, Stoica VA, et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat Mater 2021;20:194-201.

22. Liu L, Xu K, Li Q, et al. Giant domain wall conductivity in self-assembled BiFeO3 nanocrystals. Adv Funct Mater 2021;31:2005876.

23. Yin J, Zong H, Tao H, et al. Nanoscale bubble domains with polar topologies in bulk ferroelectrics. Nat Commun 2021;12:3632.

24. Liu Y, Wang Y, Ma J, et al. Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog Mater Sci 2022;127:100943.

25. Jang HW, Baek SH, Ortiz D, et al. Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys Rev Lett 2008;101:107602.

26. Zhang JX, He Q, Trassin M, et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys Rev Lett 2011;107:147602.

27. Zeches RJ, Rossell MD, Zhang JX, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 2009;326:977-80.

28. Zhang JX, Xiang B, He Q, et al. Large field-induced strains in a lead-free piezoelectric material. Nat Nanotechnol 2011;6:98-102.

29. Jang HW, Ortiz D, Baek S, et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films. Adv Mater 2009;21:817-23.

30. Baek SH, Jang HW, Folkman CM, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater 2010;9:309-14.

31. Zhang D, Sando D, Sharma P, et al. Superior polarization retention through engineered domain wall pinning. Nat Commun 2020;11:349.

32. Tian G, Yang W, Chen D, et al. Topological domain states and magnetoelectric properties in multiferroic nanostructures. Natl Sci Rev 2019;6:684-702.

33. Jia Y, Wang L, Chen F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl Phys Rev 2021;8:011307.

34. Boes A, Chang L, Langrock C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 2023;379:eabj4396.

35. Tong L, Peng Z, Lin R, et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021;373:1353-8.

36. Schröder M, Haußmann A, Thiessen A, Soergel E, Woike T, Eng LM. Conducting domain walls in lithium niobate single crystals. Adv Funct Mater 2012;22:3936-44.

37. Eliseev EA, Morozovska AN, Svechnikov GS, Gopalan V, Shur VY. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys Rev B 2011;83:235313.

38. Sun J, Li Y, Zhang B, Jiang A. High-power LiNbO3 domain-wall nanodevices. ACS Appl Mater Interfaces 2023;15:8691-8.

39. Lu H, Tan Y, McConville JPV, et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Adv Mater 2019;31:e1902890.

40. Vul BM, Guro GM, Ivanchik II. Encountering domains in ferroelectrics. Ferroelectrics 1973;6:29-31.

41. Ma J, Ma J, Zhang Q, et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat Nanotechnol 2018;13:947-52.

42. Yang W, Tian G, Zhang Y, et al. Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects. Nat Commun 2021;12:1306.

43. Yang W, Tian G, Fan H, et al. Nonvolatile ferroelectric-domain-wall memory embedded in a complex topological domain structure. Adv Mater 2022;34:e2107711.

44. Wang J, Ma J, Huang H, et al. Ferroelectric domain-wall logic units. Nat Commun 2022;13:3255.

45. Sharma P, Zhang Q, Sando D, et al. Nonvolatile ferroelectric domain wall memory. Sci Adv 2017;3:e1700512.

46. Jiang J, Bai ZL, Chen ZH, et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat Mater 2018;17:49-56.

47. Jiang AQ, Geng WP, Lv P, et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat Mater 2020;19:1188-94.

48. Lian J, Chai X, Wang C, Hu X, Jiang J, Jiang A. Sub 20 nm-node LiNbO3 domain-wall memory. Adv Mater Technol 2021;6:2001219.

49. Sun J, Li Y, Ou Y, et al. In-memory computing of multilevel ferroelectric domain wall diodes at LiNbO3 interfaces. Adv Funct Mater 2022;32:2207418.

50. Zhang W, Wang C, Lian J, Jiang J, Jiang A. Erasable ferroelectric domain wall diodes. Chin Phys Lett 2021;38:017701.

51. Zhang WJ, Shen BW, Fan HC, Hu D, Jiang AQ, Jiang J. Nonvolatile ferroelectric LiNbO3 domain wall crossbar memory. IEEE Electron Device Lett 2023;44:420-3.

52. Chen H, Brivio S, Chang C, et al. Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication. J Electroceram 2017;39:21-38.

53. Shi L, Zheng G, Tian B, Dkhil B, Duan C. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv 2020;2:1811-27.

54. Wang Z, Rao M, Midya R, et al. Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv Funct Mater 2018;28:1704862.

55. Aluguri R, Tseng T. Notice of violation of IEEE publication principles: overview of selector devices for 3-D stackable cross point RRAM arrays. IEEE J Electron Devices Soc 2016;4:294-306.

56. Shim SI, Jang J, Song J. Trends and future challenges of 3D NAND flash memory. In: 2023 IEEE International Memory Workshop (IMW); 2023 May 21-24; Monterey, USA. New York: IEEE; 2023. pp. 1-4.

57. Kim M, Yun SW, Park J, et al. A 1Tb 3b/cell 8th generation 3D-NAND flash memory with 164MB/s write throughput and a 2.4Gb/s interface. In: 2022 IEEE International Solid-State Circuits Conference (ISSCC); 2022 Feb 20-26; San Francisco, USA. New York: IEEE; 2022. pp. 136-137.

58. Kim IJ, Lee JS. Ferroelectric transistors for memory and neuromorphic device applications. Adv Mater 2023;35:e2206864.

59. Sharma P, Moise TS, Colombo L, Seidel J. Roadmap for ferroelectric domain wall nanoelectronics. Adv Funct Mater 2022;32:2110263.

60. Morozovska AN, Eliseev EA, Li Y, et al. Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach. Phys Rev B 2009;80:214110.

61. Alikin DO, Ievlev AV, Turygin AP, Lobov AI, Kalinin SV, Shur VY. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Appl Phys Lett 2015;106:182902.

62. Zhang WD, Zhuang X, Jiang J, Jiang AQ. Polarization retention dependence of imprint time within LiNbO3 single-crystal domain wall devices. J Appl Phys 2022;132:224103.

63. Sun H, Wang J, Wang Y, et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat Commun 2022;13:4332.

64. Zhang D, Schoenherr P, Sharma P, Seidel J. Ferroelectric order in van der Waals layered materials. Nat Rev Mater 2023;8:25-40.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/