REFERENCES

1. Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater 2016;1:16046.

2. Wolf SA, Awschalom DD, Buhrman RA, et al. Spintronics: a spin-based electronics vision for the future. Science 2001;294:1488-95.

3. Müller M, Efe I, Sarott MF, Gradauskaite E, Trassin M. Ferroelectric thin films for oxide electronics. ACS Appl Electron Mater 2023;5:1314-34.

4. Varotto S, Nessi L, Cecchi S, et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat Electron 2021;4:740-7.

5. Trassin M. Low energy consumption spintronics using multiferroic heterostructures. J Phys Condens Matter 2016;28:033001.

6. Manipatruni S, Nikonov DE, Lin CC, et al. Scalable energy-efficient magnetoelectric spin-orbit logic. Nature 2019;565:35-42.

7. Heron JT, Bosse JL, He Q, et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 2014;516:370-3.

8. Leo N, Carolus V, White JS, et al. Magnetoelectric inversion of domain patterns. Nature 2018;560:466-70.

9. Chauleau JY, Chirac T, Fusil S, et al. Electric and antiferromagnetic chiral textures at multiferroic domain walls. Nat Mater 2020;19:386-90.

10. Gruverman A, Alexe M, Meier D. Piezoresponse force microscopy and nanoferroic phenomena. Nat Commun 2019;10:1661.

11. Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ. Local polarization dynamics in ferroelectric materials. Rep Prog Phys 2010;73:056502.

12. Seidel J. Scanning probe microscopy investigation of topological defects. Symmetry 2022;14:1098.

13. Balke N, Maksymovych P, Jesse S, et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 2015;9:6484-92.

14. Fong DD, Thompson C. In situ synchrotron X-ray studies of ferroelectric thin films. Annu Rev Mater Res 2006;36:431-65.

15. Rondin L, Tetienne JP, Hingant T, Roch JF, Maletinsky P, Jacques V. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys 2014;77:056503.

16. Gross I, Akhtar W, Garcia V, et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 2017;549:252-6.

17. Dufour P, Abdelsamie A, Fischer J, et al. Onset of multiferroicity in prototypical single-spin cycloid BiFeO3 thin films. Nano Lett 2023;23:9073-9.

18. Haykal A, Fischer J, Akhtar W, et al. Antiferromagnetic textures in BiFeO3 controlled by strain and electric field. Nat Commun 2020;11:1704.

19. Huxter WS, Sarott MF, Trassin M, Degen CL. Imaging ferroelectric domains with a single-spin scanning quantum sensor. Nat Phys 2023;19:644-8.

20. Huxter WS, Palm ML, Davis ML, et al. Scanning gradiometry with a single spin quantum magnetometer. Nat Commun 2022;13:3761.

21. Fink J, Schierle E, Weschke E, Geck J. Resonant elastic soft x-ray scattering. Rep Prog Phys 2013;76:056502.

22. van der Laan G. Soft X-ray resonant magnetic scattering of magnetic nanostructures. CR Phys 2008;9:570-84.

23. Lovesey SW, Scagnoli V. Chirality, magnetic charge and other strange entities in resonant x-ray Bragg diffraction. J Phys Condens Matter 2009;21:474214.

24. Durr HA, Dudzik E, Dhesi SS, et al. Chiral magnetic domain structures in ultrathin FePd films. Science 1999;284:2166-8.

25. Das S, Tang YL, Hong Z, et al. Observation of room-temperature polar skyrmions. Nature 2019;568:368-72.

26. McCarter MR, Kim KT, Stoica VA, et al. Structural chirality of polar skyrmions probed by resonant elastic x-ray scattering. Phys Rev Lett 2022;129:247601.

27. Fusil S, Chauleau J, Li X, et al. Polar chirality in BiFeO3 emerging from a peculiar domain wall sequence. Adv Elect Mater 2022;8:2101155.

28. Strkalj N, De Luca G, Campanini M, et al. Depolarizing-field effects in epitaxial capacitor heterostructures. Phys Rev Lett 2019;123:147601.

29. Shin YJ, Kim Y, Kang SJ, et al. Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness. Adv Mater 2017;29:1602795.

30. Tagantsev AK, Gerra G. Interface-induced phenomena in polarization response of ferroelectric thin films. J Appl Phys 2006;100:051607.

31. Roy K, Bandyopadhyay S, Atulasimha J. Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress. Phys Rev B 2011;83:224412.

32. Hoffmann T, Thielen P, Becker P, Bohatý L, Fiebig M. Time-resolved imaging of magnetoelectric switching in multiferroic MnWO4. Phys Rev B 2011;84:184404.

33. Garello K, Avci CO, Miron IM, et al. Ultrafast magnetization switching by spin-orbit torques. Appl Phys Lett 2014;105:212402.

34. Heinz TF, Loy MM, Thompson WA. Study of Si111 surfaces by optical second-harmonic generation: reconstruction and surface phase transformation. Phys Rev Lett 1985;54:63-6.

35. Mcgilp JF. Optical second-harmonic generation for studying surfaces and interfaces. J Phys Condens Matter 1989;1:SB85-92.

36. Denev SA, Lummen TTA, Barnes E, Kumar A, Gopalan V. Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 2011;94:2699-727.

37. Pershan PS. Nonlinear optical properties of solids: energy considerations. Phys Rev 1963;130:919-29.

38. Birss RR. Symmetry and magnetism. Amsterdam: North-Holland Publishing Company; 1964.

39. Fiebig M, Pavlov VV, Pisarev RV. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Am B 2005;22:96-118.

40. Sa D, Valentí R, Gros C. A generalized Ginzburg-Landau approach to second harmonic generation. Eur Phys J B 2000;14:301-5.

41. Kirilyuk A, Rasing T. Magnetization-induced-second-harmonic generation from surfaces and interfaces. J Opt Soc Am B 2005;22:148-67.

42. Maydykovskiy A, Temiryazeva M, Temiryazev A, Murzina T. Nonlinear optical microscopy of interface layers of epitaxial garnet films. Appl Sci 2023;13:8828.

43. Mamonov EA, Novikov VB, Maydykovskiy AI, et al. Magnetic force and nonlinear optical microscopy of the surface domain structure in an epitaxial iron garnet film. J Exp Theor Phys 2023;136:31-8.

44. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature 2002;419:818-20.

45. Fiebig M, Frohlich D, Kohn K, et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys Rev Lett 2000;84:5620-3.

46. Fiebig M, Fröhlich D, Lottermoser T, Pavlov VV, Pisarev RV, Weber HJ. Second harmonic generation in the centrosymmetric antiferromagnet NiO. Phys Rev Lett 2001;87:137202.

47. Sänger I, Pavlov VV, Bayer M, Fiebig M. Distribution of antiferromagnetic spin and twin domains in NiO. Phys Rev B 2006;74:144401.

48. Fiebig M, Fröhlich D, Krichevtsov BB, Pisarev RV. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3. Phys Rev Lett 1994;73:2127-30.

49. Fiebig M, Fröhlich D, Sluyterman V L G, Pisarev RV. Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation. Appl Phys Lett 1995;66:2906-8.

50. Trassin M, De Luca G, Manz S, Fiebig M. Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation. Adv Mater 2015;27:4871-76.

51. Cherifi-Hertel S, Bulou H, Hertel R, et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat Commun 2017;8:15768.

52. Nordlander J, De Luca G, Strkalj N, Fiebig M, Trassin M. Probing ferroic states in oxide thin films using optical second harmonic generation. Appl Sci 2018;8:570.

53. De Luca G, Rossell MD, Schaab J, Viart N, Fiebig M, Trassin M. Domain wall architecture in tetragonal ferroelectric thin films. Adv Mater 2017;29:1605145.

54. Chauleau JY, Haltz E, Carrétéro C, Fusil S, Viret M. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat Mater 2017;16:803-7.

55. Yadav AK, Nelson CT, Hsu SL, et al. Observation of polar vortices in oxide superlattices. Nature 2016;530:198-201.

56. Hadjimichael M, Li Y, Zatterin E, et al. Metal-ferroelectric supercrystals with periodically curved metallic layers. Nat Mater 2021;20:495-502.

57. Kavle P, Ross AM, Zorn JA, et al. Exchange-interaction-like behavior in ferroelectric bilayers. Adv Mater 2023;35:e2301934.

58. Gradauskaite E, Meier QN, Gray N, et al. Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. 2022. Avaliable from: http://arxiv.org/abs/2212.11073 [Last accessed on 17 Nov 2023].

59. Strkalj N, Gradauskaite E, Nordlander J, Trassin M. Design and manipulation of ferroic domains in complex oxide heterostructures. Materials 2019;12:3108.

60. Ramesh R, Schlom DG. Creating emergent phenomena in oxide superlattices. Nat Rev Mater 2019;4:257-68.

61. Strkalj N, Bortis A, Campanini M, Rossell MD, Fiebig M, Trassin M. Optical second harmonic signature of phase coexistence in ferroelectric|dielectric heterostructures. Phys Rev B 2022;105:174101.

62. Caretta L, Shao YT, Yu J, et al. Non-volatile electric-field control of inversion symmetry. Nat Mater 2023;22:207-15.

63. Shafer P, García-Fernández P, Aguado-Puente P, et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc Natl Acad Sci USA 2018;115:915-20.

64. Gonçalves MA, Escorihuela-Sayalero C, Garca-Fernández P, Junquera J, Íñiguez J. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci Adv 2019;5:eaau7023.

65. Lovesey SW, van der Laan G. Circular dichroism of second harmonic generation response. Phys Rev B 2019;100:245112.

66. Behera P, May MA, Gómez-Ortiz F, et al. Electric field control of chirality. Sci Adv 2022;8:eabj8030.

67. Hu XF, Xu Z, Lim D, et al. In situ optical second-harmonic-generation monitoring of disilane adsorption and hydrogen desorption during epitaxial growth on Si001. Appl Phys Lett 1997;71:1376-8.

68. De Luca G, Strkalj N, Manz S, Bouillet C, Fiebig M, Trassin M. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat Commun 2017;8:1419.

69. Nordlander J, Campanini M, Rossell MD, et al. The ultrathin limit of improper ferroelectricity. Nat Commun 2019;10:5591.

70. Choi KJ, Biegalski M, Li YL, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 2004;306:1005-9.

71. Sarott MF, Fiebig M, Trassin M. Tracking ferroelectric domain formation during epitaxial growth of PbTiO3 films. Appl Phys Lett 2020;117:132901.

72. Strkalj N, Gattinoni C, Vogel A, et al. In-situ monitoring of interface proximity effects in ultrathin ferroelectrics. Nat Commun 2020;11:5815.

73. Gattinoni C, Strkalj N, Härdi R, Fiebig M, Trassin M, Spaldin NA. Interface and surface stabilization of the polarization in ferroelectric thin films. Proc Natl Acad Sci USA 2020;117:28589-95.

74. Sarott MF, Bucheli U, Lochmann A, Fiebig M, Trassin M. Controlling the polarization in ferroelectric PZT films via the epitaxial growth conditions. Adv Funct Mater 2023;33:2214849.

75. Sarott MF, Rossell MD, Fiebig M, Trassin M. Multilevel polarization switching in ferroelectric thin films. Nat Commun 2022;13:3159.

76. Marković D, Mizrahi A, Querlioz D, Grollier J. Physics for neuromorphic computing. Nat Rev Phys 2020;2:499-510.

77. Chanthbouala A, Garcia V, Cherifi RO, et al. A ferroelectric memristor. Nat Mater 2012;11:860-4.

78. Sarott MF, Gradauskaite E, Nordlander J, Strkalj N, Trassin M. In situmonitoring of epitaxial ferroelectric thin-film growth. J Phys Condens Matter 2021;33:293001.

79. Gradauskaite E, Meier QN, Gray N, et al. Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. Nat Mater 2023;22:1492-8.

80. Gradauskaite E, Campanini M, Biswas B, et al. Robust in-plane ferroelectricity in ultrathin epitaxial aurivillius films. Adv Materials Inter 2020;7:2000202.

81. Zhang Y, Dai J, Zhong X, Zhang D, Zhong G, Li J. Probing ultrafast dynamics of ferroelectrics by time-resolved pump-probe spectroscopy. Adv Sci 2021;8:e2102488.

82. Kirilyuk A, Kimel AV, Rasing T. Ultrafast optical manipulation of magnetic order. Rev Mod Phys 2010;82:2731-84.

83. Mankowsky R, von Hoegen A, Först M, Cavalleri A. Ultrafast reversal of the ferroelectric polarization. Phys Rev Lett 2017;118:197601.

84. Duong NP, Satoh T, Fiebig M. Ultrafast manipulation of antiferromagnetism of NiO. Phys Rev Lett 2004;93:117402.

85. Satoh T, Van Aken BB, Duong NP, Lottermoser T, Fiebig M. Ultrafast spin and lattice dynamics in antiferromagnetic Cr2O3. Phys Rev B 2007;75:155406.

86. Tzschaschel C, Satoh T, Fiebig M. Tracking the ultrafast motion of an antiferromagnetic order parameter. Nat Commun 2019;10:3995.

87. Cheong S, Fiebig M, Wu W, Chapon L, Kiryukhin V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater 2020;5:3.

88. Neacsu CC, van Aken BB, Fiebig M, Raschke MB. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3. Phys Rev B 2009;79:100107.

89. Damodaran AR, Clarkson JD, Hong Z, et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat Mater 2017;16:1003-9.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/