REFERENCES

1. Bednorz JG, Müller KA. Possible highT c superconductivity the Ba-La-Cu-O system. Z Physik B Condens Matter 1986;64:189-93.

2. Ahn CH, Tybell T, Antognazza L, et al. Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 1997;276:1100-3.

3. von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett 1993;71:2331-3.

4. Chen J, Nittala K, Forrester JS, et al. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds. J Am Chem Soc 2011;133:11114-7.

5. Takenaka K, Takagi H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl Phys Lett 2005;87:261902.

6. Takenaka K, Asano K, Misawa M, Takagi H. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect. Appl Phys Lett 2008;92:011927.

7. Takenaka K, Takagi H. Zero thermal expansion in a pure-form antiperovskite manganese nitride. Appl Phys Lett 2009;94:131904.

8. Huang R, Li L, Cai F, Xu X, Qian L. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl Phys Lett 2008;93:081902.

9. Lin JC, Tong P, Tong W, et al. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Mn3+xAg1-xN (0 ≤ x ≤ 0.6). Appl Phys Lett 2015;106:082405.

10. Lin JC, Tong P, Zhou XJ, et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3. Appl Phys Lett 2015;107:131902.

11. Sun Y, Wang C, Wen Y, Zhu K, Zhao J. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN. Appl Phys Lett 2007;91:231913.

12. Sun Y, Wang C, Wen Y, et al. Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1-xSnxN compounds: rapid communications of the American ceramic society. J Am Ceram Soc 2010;93:2178-81.

13. Ding L, Wang C, Sun Y, Colin CV, Chu L. Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1-xCuxN compounds. J Appl Phys 2015;117:213915.

14. Chu L, Wang C, Yan J, et al. Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn3Ni1-xAgxN antiperovskite compounds. Scr Mater 2012;67:173-6.

15. Deng S, Sun Y, Wu H, et al. Invar-like behavior of antiperovskite Mn3+xNi1-xN compounds. Chem Mater 2015;27:2495-501.

16. Song X, Sun Z, Huang Q, et al. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv Mater 2011;23:4690-4.

17. Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys Rev Lett 2008;101:205901.

18. Iikubo S, Kodama K, Takenaka K, Takagi H, Shamoto S. Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure: neutron powder diffraction measurements. Phys Rev B 2008;77:020409.

19. Tong P, Louca D, King G, Llobet A, Lin JC, Sun YP. Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3. Appl Phys Lett 2013;102:041908.

20. Wang C, Chu L, Yao Q, et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3 (Zn, M)x N(M = Ag, Ge). Phys Rev B 2012;85:220103.

21. Deng S, Sun Y, Wu H, et al. Phase separation and zero thermal expansion in antiperovskite Mn3Zn0.77Mn0.19N0.94: an in situ neutron diffraction investigation. Scr Mater 2018;146:18-21.

22. Shi K, Sun Y, Colin CV, et al. Investigation of the spin-lattice coupling in Mn3Ga1-xSnxN antiperovskites. Phys Rev B 2018;97:054110.

23. Lukashev P, Sabirianov RF, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B 2008;78:184414.

24. Qu BY, Pan BC. Nature of the negative thermal expansion in antiperovskite compound Mn3ZnN. J Appl Phys 2010;108:113920.

25. Mochizuki M, Kobayashi M, Okabe R, Yamamoto D. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets. Phys Rev B 2018;97:060401.

26. Kamishima K, Goto T, Nakagawa H, et al. Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys Rev B 2000;63:024426.

27. Deng S, Fischer G, Uhlarz M, et al. Controlling chiral spin states of a triangular-lattice magnet by cooling in a magnetic field. Adv Funct Mater 2019;29:1900947.

28. Gurung G, Shao DF, Paudel TR, Tsymbal EY. Anomalous HALL conductivity of noncollinear magnetic antiperovskites. Phys Rev Mater 2019;3:044409.

29. Samathrakis I, Zhang H. Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN. Phys Rev B 2020;101:214423.

30. Zhao K, Hajiri T, Chen H, Miki R, Asano H, Gegenwart P. Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1-xCuxN. Phys Rev B 2019;100:045109.

31. Rani GM, Wu CM, Motora KG, Umapathi R. Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J Clean Prod 2022;363:132532.

32. Gokana MR, Wu CM, Motora KG, Qi JY, Yen WT. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J Power Sources 2022;536:231524.

33. Zemen J, Gercsi Z, Sandeman KG. Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides. Phys Rev B 2017;96:024451.

34. Boldrin D, Mihai AP, Zou B, et al. Giant Piezomagnetism in Mn3NiN. ACS Appl Mater Interfaces 2018;10:18863-8.

35. Shi K, Sun Y, Yan J, et al. Baromagnetic effect in antiperovskite Mn3Ga0.95N0.94 by neutron powder diffraction analysis. Adv Mater 2016;28:3761-7.

36. Tohei T, Wada H, Kanomata T. Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC. J Appl Phys 2003;94:1800-2.

37. Yu M, Lewis LH, Moodenbaugh AR. Assessment of the magnetic entropy change in the metallic antiperovskite Mn3GaC1-δ (δ = 0, 0.22). J Magn Magn Mater 2006;299:317-26.

38. Tohei T, Wada H, Kanomata T. Large magnetocaloric effect of Mn3-xCoxGaC. J Magn Magn Mater 2004;272-76:E585-6.

39. Yan J, Sun Y, Wu H, et al. Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96. Acta Mater 2014;74:58-65.

40. Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 2015;14:73-8.

41. Boldrin D, Mendive-tapia E, Zemen J, et al. Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys Rev X 2018;8:041035.

42. Chi EO, Kim WS, Hur NH. Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun 2001;120:307-10.

43. Sun Y, Wang C, Chu L, Wen Y, Nie M, Liu F. Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound. Scr Mater 2010;62:686-9.

44. Takenaka K, Ozawa A, Shibayama T, Kaneko N, Oe T, Urano C. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1-xCuxN. Appl Phys Lett 2011;98:022103.

45. Lin JC, Wang BS, Tong P, et al. Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn3. Scr Mater 2011;65:452-5.

46. Deng S, Sun Y, Wang L, et al. Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1-xN. Appl Phys Lett 2016;108:041908.

47. He T, Huang Q, Ramirez AP, et al. Superconductivity in the non-oxide perovskite MgCNi3. Nature 2001;411:54-6.

48. Rosner H, Weht R, Johannes MD, Pickett WE, Tosatti E. Superconductivity near ferromagnetism in MgCNi3. Phys Rev Lett 2002;88:027001.

49. Wu M, Isshiki H, Chen T, Higo T, Nakatsuji S, Otani Y. Magneto-optical Kerr effect in a non-collinear antiferromagnet Mn3Ge. Appl Phys Lett 2020;116:132408.

50. Balk AL, Sung NH, Thomas SM, et al. Comparing the anomalous Hall effect and the magneto-optical Kerr effect through antiferromagnetic phase transitions in Mn3Sn. Appl Phys Lett 2019;114:032401.

51. Feng W, Guo GY, Zhou J, Yao Y, Niu Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys Rev B 2015;92:144426.

52. Kamishima K, Bartashevich M, Goto T, Kikuchi M, Kanomata T. Magnetic behavior of Mn3GaC under high magnetic field and high pressure. J Phys Soc Jpn 1998;67:1748-54.

53. Fruchart D, Bertaut EF, Sayetat F, Nasr Eddine M, Fruchart R, Sénateur JP. Structure magnetique de Mn3GaC. Solid State Commun 1970;8:91-9.

54. Fruchart D, Bertaut EF. Magnetic studies of the metallic perovskite-type compounds of manganese. J Phys Soc Jpn 1978;44:781-91.

55. Çakιr Ö, Acet M. Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements. Appl Phys Lett 2012;100:202404.

56. Sénateur JP, Boursier D, L'héritier P, Lorthioir G, Fruchart ME, Le Caer G. Etude par spectrometrie mössbauer de ZnMn3 et de la transition antiferro-ferromagnetique de GaMn3C dopes au fer 57. Mater Res Bull 1974;9:603-14.

57. Deng S, Sun Y, Wang L, et al. Frustrated triangular magnetic structures of Mn3ZnN: applications in thermal expansion. J Phys Chem C 2015;119:24983-90.

58. Fruchart D, Bertaut EF, Madar R, Fruchart R. Diffraction neutronique de Mn3ZnN. J Phys Colloques 1971;32:C1-876.

59. Wu M, Wang C, Sun Y, et al. Magnetic structure and lattice contraction in Mn3NiN. J Appl Phys 2013;114:123902.

60. Hua L, Wang L, Chen LF. First-principles investigation of Ge doping effects on the structural, electronic and magnetic properties in antiperovskite Mn3CuN. J Phys Condens Matter 2010;22:206003.

61. Han H, Sun Y, Deng S, et al. Effect of thermal stress on non-collinear antiferromagnetic phase transitions in antiperovskite Mn3GaN compounds with Mn3SbN inclusions. Ceramics Int 2022;48:15200-6.

62. Sun Y, Hu P, Shi K, et al. Giant zero-field cooling exchange-bias-like behavior in antiperovskite Mn3Co0.61Mn0.39N compound. Phys Rev Mater 2019;3:024409.

63. Salvador JR, Guo F, Hogan T, Kanatzidis MG. Zero thermal expansion in YbGaGe due to an electronic valence transition. Nature 2003;425:702-5.

64. Mary TA, Evans JSO, Vogt T, Sleight AW. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996;272:90-2.

65. Song Y, Shi N, Deng S, Xing X, Chen J, et al. Negative thermal expansion in magnetic materials. Prog Mater Sci 2021;121:100835.

66. Chen J, Hu L, Deng J, Xing X. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev 2015;44:3522-67.

67. Gava V, Martinotto AL, Perottoni CA. First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. Phys Rev Lett 2012;109:195503.

68. Li CW, Tang X, Muñoz JA, et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys Rev Lett 2011;107:195504.

69. Long YW, Hayashi N, Saito T, Azuma M, Muranaka S, Shimakawa Y. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature 2009;458:60-3.

70. Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat Commun 2011;2:349.

71. Chen J, Fan L, Ren Y, et al. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys Rev Lett 2013;110:115901.

72. Huang R, Liu Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J Am Chem Soc 2013;135:11469-72.

73. Qi TF, Korneta OB, Parkin S, De Long LE, Schlottmann P, Cao G. Negative volume thermal expansion via orbital and magnetic orders in Ca2Ru1-xCrxO4 (0 < x < 0.13). Phys Rev Lett 2010;105:177203.

74. Richter DD, Markewitz D, Trumbore SE, Wells CG. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999;400:56-8.

75. Kiyama T, Yoshimura K, Kosuge K, Ikeda Y, Bando Y. Invar effect of SrRuO3: itinerant electron magnetism of Ru 4d electrons. Phys Rev B Condens Matter 1996;54:R756-9.

76. Taniguchi T, Mizusaki S, Okada N, et al. Anomalous volume expansion in CaRu0.85Fe0.15O3: neutron powder diffraction and magnetic compton scattering. Phys Rev B 2007;75:024414.

77. Klimczuk T, Walker HC, Springell R, et al. Negative thermal expansion and antiferromagnetism in the actinide oxypnictide NpFeAsO. Phys Rev B 2012;85:174506.

78. Uchishiba H. Antiferromagnetism of γ-phase manganese alloys containing Ni, Zn, Ga and Ge. J Phys Soc Jpn 1971;31:436-40.

79. Yokoyama T, Eguchi K. Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys. Phys Rev Lett 2013;110:075901.

80. Yu C, Lin K, Jiang S, et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite. Nat Commun 2021;12:4701.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/