REFERENCES

1. Scott JF. Future issues in ferroelectric miniaturization. Ferroelectrics 1998;206:365-79.

2. Li S, Eastman JA, Vetrone JM, Foster CM, Newnham RE, Cross LE. Dimension and size effects in ferroelectrics. Jpn J Appl Phys 1997;36:5169.

3. Qiao H, Wang C, Choi WS, Park MH, Kim Y. Ultra-thin ferroelectrics. Mater Sci Eng R Rep 2021;145:100622.

4. Tybell T, Ahn CH, Triscone J. Ferroelectricity in thin perovskite films. Appl Phys Lett 1999;75:856-8.

5. Fong DD, Stephenson GB, Streiffer SK, et al. Ferroelectricity in ultrathin perovskite films. Science 2004;304:1650-3.

6. Choi KJ, Biegalski M, Li YL, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 2004;306:1005-9.

7. Cheema SS, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020;580:478-82.

8. Vasudevan RK, Matsumoto Y, Cheng X, et al. Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat Commun 2014;5:4971.

9. Guo YY, Gibbs AS, Perez-Mato JM, Lightfoot P. Unexpected phase transition sequence in the ferroelectric Bi4Ti3O12. IUCrJ 2019;6:438-46.

10. Deepak N, Zhang PF, Keeney L, Pemble ME, Whatmore RW. Atomic vapor deposition of bismuth titanate thin films. J Appl Phys 2013;113:187207.

11. Keeney L, Groh C, Kulkarni S, Roy S, Pemble ME, Whatmore RW. Room temperature electromechanical and magnetic investigations of ferroelectric Aurivillius phase Bi5Ti3(FexMn1-x)O15 (x = 1 and 0.7) chemical solution deposited thin films. J Appl Phys 2012;112:024101.

12. Keeney L, Kulkarni S, Deepak N, et al. Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films. J Appl Phys 2012;112:052010.

13. Keeney L, Zhang PF, Groh C, Pemble ME, Whatmore RW. Piezoresponse force microscopy investigations of Aurivillius phase thin films. J Appl Phys 2010;108:042004.

14. Zhang PF, Deepak N, Keeney L, Pemble ME, Whatmore RW. The structural and piezoresponse properties of c-axis-oriented Aurivillius phase Bi5Ti3FeO15 thin films deposited by atomic vapor deposition. Appl Phys Lett 2012;101:112903.

15. Wouters DJ, Maes D, Goux L, et al. Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory. J Appl Phys 2006;100:051603.

16. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999;401:682-4.

17. Annual report pursuant to section 13 or 15(d) of the securities exchange act of 1934 for the fiscal year ended March 31, 2006 commission file number 1 - 6784. Available from: https://www.sec.gov/Archives/edgar/data/63271/000119312506188347/d20f.htm [Last accessed on 16 Oct 2023].

18. Fujii E, Uchiyama K. First 0.18 μm SBT-based embedded FeRAM technology with hydrogen damage free stacked cell structure. Integr Ferroelectr 2003;53:317-23.

19. Pitcher MJ, Mandal P, Dyer MS, et al. Magnetic materials. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 2015;347:420-4.

20. Suwardi A, Prasad B, Lee S, et al. Turning antiferromagnetic Sm0.34Sr0.66MnO3 into a 140 K ferromagnet using a nanocomposite strain tuning approach. Nanoscale 2016;8:8083-90.

21. Choi EM, Maity T, Kursumovic A, et al. Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO3 films. Nat Commun 2020;11:2207.

22. Srihari NV, Vinayakumar KB, Nagaraja KK. Magnetoelectric coupling in bismuth ferrite - challenges and perspectives. Coatings 2020;10:1221.

23. Keeney L, Maity T, Schmidt M, et al. Magnetic field-induced ferroelectric switching in multiferroic aurivillius phase thin films at room temperature. J Am Ceram Soc 2013;96:2339-57.

24. Faraz A, Maity T, Schmidt M, et al. Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic aurivillius phase thin films. J Am Ceram Soc 2017;100:975-87.

25. Moore K, O'Connell EN, Griffin SM, et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film. ACS Appl Mater Interfaces 2022;14:5525-36.

26. Keeney L, Smith RJ, Palizdar M, et al. Ferroelectric behavior in exfoliated 2D aurivillius oxide flakes of sub-unit cell thickness. Adv Elect Materials 2020;6:1901264.

27. Keeney L, Saghi Z, O’sullivan M, Alaria J, Schmidt M, Colfer L. Persistence of ferroelectricity close to unit-cell thickness in structurally disordered aurivillius phases. Chem Mater 2020;32:10511-23.

28. Keeney L, Colfer L, Schmidt M. Probing ferroelectric behavior in sub-10 nm bismuth-rich aurivillius films by piezoresponse force microscopy. Microsc Microanal 2022;28:1396-406.

29. Gradauskaite E, Campanini M, Biswas B, et al. Robust in-plane ferroelectricity in ultrathin epitaxial aurivillius films. Adv Materials Inter 2020;7:2000202.

30. Gradauskaite E, Gray N, Campanini M, Rossell MD, Trassin M. Nanoscale design of high-quality epitaxial aurivillius thin films. Chem Mater 2021;33:9439-46.

31. Wang Y, Chen W, Wang B, Zheng Y. Ultrathin ferroelectric films: growth, characterization, physics and applications. Materials 2014;7:6377-485.

32. Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford: Oxford University Press; 1977. p.525. Available from: https://academic.oup.com/book/25990 [Last accessed on 11 Oct 2023].

33. Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys 1984;47:399.

34. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56:930-3.

35. Steffes JJ, Ristau RA, Ramesh R, Huey BD. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proc Natl Acad Sci USA 2019;116:2413-8.

36. Wang J, Yan Y, Li Z, Geng Y, Luo X, Fan P. Processing outcomes of atomic force microscope tip-based nanomilling with different trajectories on single-crystal silicon. Precis Eng 2021;72:480-90.

37. Iwata F, Saigo K, Asao T, et al. Removal method of nano-cut debris for photomask repair using an atomic force microscopy system. Jpn J Appl Phys 2009;48:08JB20.

38. Robinson T, Dinsdale A, Bozak R, White R, Archuletta M. Nanomachining processes for 45, 32 nm mode mask repair and beyond. Procedings of the Photomask and Next-Generation Lithography Mask Technology XV; 2008 May 19; Yokohama, Japan.

39. Robinson T, Dinsdale A, Bozak R, Arruza B. Advanced mask particle cleaning solutions. Procedings of the SPIE Photomask Technology; 2007 Oct 30; Monterey, United States.

40. Bartkowska JA, Bochenek D, Niemiec P. Multiferroic aurivillius-type Bi6Fe2-xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constant. Appl Phys A 2018;124:823.

41. Sader JE, Borgani R, Gibson CT, et al. A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Rev Sci Instrum 2016;87:093711.

42. Kalinin SV, Rodriguez BJ, Jesse S, et al. Vector piezoresponse force microscopy. Microsc Microanal 2006;12:206-20.

43. Ismunandar, Kamiyama T, Hoshikawa A, et al. Structural studies of five layer Aurivillius oxides: A2Bi4Ti5O18 (A = Ca, Sr, Ba and Pb). J Solid State Chem 2004;177:4188-96.

44. Holder CF, Schaak RE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019;13:7359-65.

45. Frank FC, van der Merwe JH. One-dimensional dislocations III. Influence of the second harmonic term in the potential representation, on the properties of the model. Proceedings of the Royal Society of London; 1949 Dec 22; London, UK. London: Royal; pp. 125-34.

46. Trolier-mckinstry S. Crystal chemistry of piezoelectric materials. In: Safari A, Akdoğan EK, editors. Piezoelectric and acoustic materials for transducer applications. Boston: Springer US; 2008. pp. 39-56.

47. Whatmore, R. Ferroelectric materials. In: Kasap S, Capper P, editors. Springer handbook of electronic and photonic materials. Springer International Publishing: Cham; 2017. p. 1.

48. Landau L, Lifshitz E. 3 - on the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In: Pitaevski LP editors. Perspectives in theoretical physics. The collected papers of E. M. Lifshitz. Amsterdam:Elsevier; 1992. pp. 51-65.

49. Kittel C. Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 1946;70:965.

50. Kittel C. Physical theory of ferromagnetic domains. Rev Mod Phys 1949;21:541.

51. Wang H, Liu ZR, Yoong HY, et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat Commun 2018;9:3319.

52. Gradauskaite E, Meier QN, Gray N, et al. Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. arXiv 2022:2212;11073.

53. Nam J, Hughes RA, Castellan JP, Gaulin BD, Britten JF, Preston JS. The origin of preferential twinning in YBa2Cu3O7-δ thin films deposited on the (0 0 1) NdGaO3 substrate. J Appl Phys 2005;97:123906.

54. Zurbuchen MA, Cahill DG, Schubert J, Jia Y, Schlom DG. Determination of the thermal conductivity tensor of the n = 7 Aurivillius phase Sr4Bi4Ti7O24. Appl Phys Lett 2012;101:021904.

55. Shen XW, Fang YW, Tian BB, Duan CG. Two-dimensional ferroelectric tunnel junction: the case of monolayer in:SnSe/SnSe/Sb:SnSe homostructure. ACS Appl Electron Mater 2019;1:1133-40.

56. Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016;353:274-8.

57. Liu J, Chang K, JI SH, Chen X, Fu L. Apparatus and methods for memory using in-plane polarization. Available from: https://www.osti.gov/servlets/purl/1438442 [Last accessed on 11 Oct 2023].

58. Shen H, Liu J, Chang K, Fu L. In-plane ferroelectric tunnel junction. Phys Rev Appl 2019;11:024048.

59. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 2011;44:1272-6.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/