REFERENCES

1. Covaci C, Gontean A. Piezoelectric energy harvesting solutions: a review. Sensors 2020;20:3512.

2. Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021;80:105567.

3. Shung KK, Cannata JM, Zhou QF. Piezoelectric materials for high frequency medical imaging applications: a review. J Electroceram 2007;19:141-7.

4. Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, Basha DB. A review on piezoelectric materials and their applications. Cryst Res Technol 2023;58:2200130.

5. Iqbal M, Nauman MM, Khan FU, et al. Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review. Int J Energy Res 2021;45:65-102.

6. Li F, Lin D, Chen Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17:349-54.

7. Li F, Cabral MJ, Xu B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 2019;364:264-8.

8. Zhang S. High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 2022;3:2023003.

9. Batson PE, Dellby N, Krivanek OL. Sub-angstrom resolution using aberration corrected electron optics. Nature 2002;418:617-20.

10. Krivanek O, Dellby N, Lupini A. Towards sub-Å electron beams. Ultramicroscopy 1999;78:1-11.

11. Hetherington C. Aberration correction for TEM. Mater Today 2004;7:50-5.

12. Voyles PM, Muller DA, Grazul JL, Citrin PH, Gossmann HJ. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 2002;416:826-9.

13. Voyles PM, Grazul JL, Muller DA. Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 2003;96:251-73.

14. Jiang Y, Chen Z, Han Y, et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018;559:343-9.

15. Liu C, Cui J, Cheng Z, et al. Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions. Adv Mater 2023;35:e2209941.

16. Close R, Chen Z, Shibata N, Findlay SD. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 2015;159 Pt 1:124-37.

17. Krivanek OL, Lovejoy TC, Dellby N, et al. Vibrational spectroscopy in the electron microscope. Nature 2014;514:209-12.

18. de la Mata M, Molina SI. STEM tools for semiconductor characterization: beyond high-resolution imaging. Nanomaterials 2022;12:337.

19. Ophus C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc Microanal 2019;25:563-82.

20. Lin Y, Zhou M, Tai X, Li H, Han X, Yu J. Analytical transmission electron microscopy for emerging advanced materials. Matter 2021;4:2309-39.

21. Williams DB, Carter CB. Transmission electron microscopy. New York: Springer; 1996.

22. Lebeau JM, Stemmer S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 2008;108:1653-8.

23. LeBeau JM, Findlay SD, Allen LJ, Stemmer S. Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 2008;100:206101.

24. Muller DA, Nakagawa N, Ohtomo A, Grazul JL, Hwang HY. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 2004;430:657-61.

25. Fitting L, Thiel S, Schmehl A, Mannhart J, Muller DA. Subtleties in ADF imaging and spatially resolved EELS: a case study of low-angle twist boundaries in SrTiO3. Ultramicroscopy 2006;106:1053-61.

26. Zhang W, Zhang X, Xu P, et al. Structure domains induced nonswitchable ferroelectric polarization in polar doubly cation-ordered perovskites. Ceram Int 2022;48:30853-8.

27. Campanini M, Erni R, Yang CH, Ramesh R, Rossell MD. Periodic giant polarization gradients in doped BiFeO3 thin films. Nano Lett 2018;18:717-24.

28. Shur VY, Akhmatkhanov AR, Baturin IS. Micro- and nano-domain engineering in lithium niobate. App Phys Rev 2015;2:040604.

29. Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M, Kondo Y. Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc Microanal 2009;15:164-5.

30. Findlay SD, Shibata N, Sawada H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl Phys Lett 2009;95:191913.

31. Ge W, Beanland R, Alexe M, Ramasse Q, Sanchez AM. 180° head-to-head flat domain walls in single crystal BiFeO3. Microstructures 2023;3:2023026.

32. Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 2011;10:278-81.

33. Okunishi E, Sawada H, Kondo Y. Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM). Micron 2012;43:538-44.

34. Vogel A, Sarott MF, Campanini M, Trassin M, Rossell MD. Monitoring electrical biasing of Pb(Zr0.2Ti0.8)O3 ferroelectric thin films in situ by DPC-stem imaging. Materials 2021;14:4749.

35. Yücelen E, Lazić I, Bosch EGT. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci Rep 2018;8:2676.

36. Rose H. Nonstandard imaging methods in electron microscopy. Ultramicroscopy 1977;2:251-67.

37. Chapman JN, Batson PE, Waddell EM, Ferrier RP. The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 1978;3:203-13.

38. Shibata N, Findlay SD, Kohno Y, Sawada H, Kondo Y, Ikuhara Y. Differential phase-contrast microscopy at atomic resolution. Nat Phys 2012;8:611-5.

39. Lazić I, Bosch EGT, Lazar S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 2016;160:265-80.

40. Kumar A, Baker JN, Bowes PC, et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat Mater 2021;20:62-7.

41. Pennycook TJ, Lupini AR, Yang H, Murfitt MF, Jones L, Nellist PD. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. Ultramicroscopy 2015;151:160-7.

42. Yang H, Pennycook TJ, Nellist PD. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions. Ultramicroscopy 2015;151:232-9.

43. Maclaren I, Macgregor TA, Allen CS, Kirkland AI. Detectors - the ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater 2020;8:110901.

44. Tate MW, Purohit P, Chamberlain D, et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc Microanal 2016;22:237-49.

45. Chen Z, Jiang Y, Shao YT, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 2021;372:826-31.

46. Lozano JG, Martinez GT, Jin L, Nellist PD, Bruce PG. Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett 2018;18:6850-5.

47. Chen Z, Odstrcil M, Jiang Y, et al. Mixed-state electron ptychography enables sub-Angstrom resolution imaging with picometer precision at low dose. Nat Commun 2020;11:2994.

48. Zeltmann SE, Müller A, Bustillo KC, et al. Patterned probes for high precision 4D-STEM bragg measurements. Ultramicroscopy 2020;209:112890.

49. Mahr C, Müller-Caspary K, Grieb T, Krause FF, Schowalter M, Rosenauer A. Accurate measurement of strain at interfaces in 4D-STEM: a comparison of various methods. Ultramicroscopy 2021;221:113196.

50. Tsuda K, Yasuhara A, Tanaka M. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO3 by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods. Appl Phys Lett 2013;103:082908.

51. Mun J, Peng W, Roh CJ, et al. In situ cryogenic HAADF-STEM observation of spontaneous transition of ferroelectric polarization domain structures at low temperatures. Nano Lett 2021;21:8679-86.

52. Zheng H, Zhu Y. Perspectives on in situ electron microscopy. Ultramicroscopy 2017;180:188-96.

53. Ross FM. Opportunities and challenges in liquid cell electron microscopy. Science 2015;350:aaa9886.

54. Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH. Electron-water interactions and implications for liquid cell electron microscopy. J Phys Chem C 2014;118:22373-82.

55. Nukala P, Ahmadi M, Antoja-lleonart J, et al. In situ heating studies on temperature-induced phase transitions in epitaxial Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 heterostructures. Appl Phys Lett 2021;118:062901.

56. Xu W, Bowes PC, Grimley ED, Irving DL, Lebeau JM. In-situ real-space imaging of single crystal surface reconstructions via electron microscopy. Appl Phys Lett 2016;109:201601.

57. Zhu Y, Wang S, Li B, et al. Twist-to-untwist evolution and cation polarization behavior of hybrid halide perovskite nanoplatelets revealed by cryogenic transmission electron microscopy. J Phys Chem Lett 2021;12:12187-95.

58. Chen Z, Wang X, Ringer SP, Liao X. Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution. Phys Rev Lett 2016;117:027601.

59. Chen Z, Li F, Huang Q, et al. Giant tuning of ferroelectricity in single crystals by thickness engineering. Sci Adv 2020;6:eabc7156.

60. Chen Z, Huang Q, Wang F, Ringer SP, Luo H, Liao X. Stress-induced reversible and irreversible ferroelectric domain switching. Appl Phys Lett 2018;112:152901.

61. Chen Z, Hong L, Wang F, et al. Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain structures. Phys Rev Lett 2017;118:017601.

62. Huang Q, Yang J, Chen Z, et al. Formation of head/tail-to-body charged domain walls by mechanical stress. ACS Appl Mater Interfaces 2023;15:2313-8.

63. Taheri ML, Stach EA, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016;170:86-95.

64. Fan Z, Zhang L, Baumann D, et al. In situ transmission electron microscopy for energy materials and devices. Adv Mater 2019;31:e1900608.

65. Deng Y, Zhang R, Pekin TC, et al. Functional materials under stress: in situ TEM observations of structural evolution. Adv Mater 2020;32:e1906105.

66. Muller DA, Kirkland EJ, Thomas MG, Grazul JL, Fitting L, Weyland M. Room design for high-performance electron microscopy. Ultramicroscopy 2006;106:1033-40.

67. Ophus C, Ciston J, Nelson CT. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions. Ultramicroscopy 2016;162:1-9.

68. Jones L, Nellist PD. Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc Microanal 2013;19:1050-60.

69. Schnedler M, Weidlich PH, Portz V, Weber D, Dunin-Borkowski RE, Ebert P. Correction of nonlinear lateral distortions of scanning probe microscopy images. Ultramicroscopy 2014;136:86-90.

70. Berkels B, Binev P, Blom DA, Dahmen W, Sharpley RC, Vogt T. Optimized imaging using non-rigid registration. Ultramicroscopy 2014;138:46-56.

71. Berkels B, Liebscher CH. Joint non-rigid image registration and reconstruction for quantitative atomic resolution scanning transmission electron microscopy. Ultramicroscopy 2019;198:49-57.

72. Jones L, Yang H, Pennycook TJ, et al. Smart align - a new tool for robust non-rigid registration of scanning microscope data. Adv Struct Chem Imaging 2015;1:8.

73. Ihara S, Saito H, Yoshinaga M, Avala L, Murayama M. Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy. Sci Rep 2022;12:13462.

74. Sang X, LeBeau JM. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 2014;138:28-35.

75. Dycus JH, Harris JS, Sang X, et al. Accurate nanoscale crystallography in real-space using scanning transmission electron microscopy. Microsc Microanal 2015;21:946-52.

76. Borisevich A, Ovchinnikov OS, Chang HJ, et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 2010;4:6071-9.

77. Zuo JM, Shah AB, Kim H, Meng Y, Gao W, Rouviére JL. Lattice and strain analysis of atomic resolution Z-contrast images based on template matching. Ultramicroscopy 2014;136:50-60.

78. Kirkland EJ, Loane RF, Silcox J. Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 1987;23:77-96.

79. Barthel J. Dr. Probe: A software for high-resolution STEM image simulation. Ultramicroscopy 2018;193:1-11.

80. Lazić I, Bosch EGT. Chapter three - analytical review of direct stem imaging techniques for thin samples. Adv Imaging Electron Phys 2017;199:75-184.

81. Sang X, Oni AA, LeBeau JM. Atom column indexing: atomic resolution image analysis through a matrix representation. Microsc Microanal 2014;20:1764-71.

82. Nord M, Vullum PE, MacLaren I, Tybell T, Holmestad R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv Struct Chem Imaging 2017;3:9.

83. Backer A, van den Bos KHW, Van den Broek W, Sijbers J, Van Aert S. StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. Ultramicroscopy 2016;171:104-16.

84. Zhang Q, Zhang LY, Jin CH, Wang YM, Lin F. CalAtom: a software for quantitatively analysing atomic columns in a transmission electron microscope image. Ultramicroscopy 2019;202:114-20.

85. Wang Y, Salzberger U, Sigle W, Eren Suyolcu Y, van Aken PA. Oxygen octahedra picker: a software tool to extract quantitative information from STEM images. Ultramicroscopy 2016;168:46-52.

86. Du H. DMPFIT: a tool for atomic-scale metrology via nonlinear least-squares fitting of peaks in atomic-resolution TEM images. Nanomanuf Metrol 2022;5:101-11.

87. Sang X, Grimley ED, Niu C, Irving DL, Lebeau JM. Direct observation of charge mediated lattice distortions in complex oxide solid solutions. Appl Phys Lett 2015;106:061913.

88. Oni AA, Sang X, Raju SV, et al. Large area strain analysis using scanning transmission electron microscopy across multiple images. Appl Phys Lett 2015;106:011601.

89. Hytch MJH, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998;74:131-46.

90. Rouviere J, Béché A, Martin Y, Denneulin T, Cooper D. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl Phys Lett 2013;103:241913.

91. Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017;29:1701824.

92. Jeong IK, Darling TW, Lee JK, et al. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys Rev Lett 2005;94:147602.

93. Wu H, Zhang Y, Wu J, Wang J, Pennycook SJ. Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv Funct Mater 2019;29:1902911.

94. Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys 2005;38:R123.

95. Moore K, O’Connell EN, Griffin SM, et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film. ACS Appl Mater Interfaces 2022;14:5525-36.

96. de la Peña F, Prestat E, Fauske VT, et al. Hyperspy/hyperspy: release v1.7.3. 2022.

97. O’Connell EN, Moore K, McFall E, et al. TopoTEM: a python package for quantifying and visualizing scanning transmission electron microscopy data of polar topologies. Microsc Microanal 2022;28:1444-52.

98. Cabral MJ, Zhang S, Dickey EC, Lebeau JM. Gradient chemical order in the relaxor Pb(Mg1/3Nb2/3)O3. Appl Phys Lett 2018;112:082901.

99. Xu M, Kumar A, LeBeau JM. Correlating local chemical and structural order using geographic information systems-based spatial statistics. Ultramicroscopy 2023;243:113642.

100. Savitzky BH, Zeltmann SE, Hughes LA, et al. py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc Microanal 2021;27:712-43.

101. Savitzky BH, Hughes L, Bustillo KC, et al. py4DSTEM: open source software for 4D-STEM data analysis. Microsc Microanal 2019;25:124-5.

102. Wang S, Eldred TB, Smith JG, Gao W. AutoDisk: automated diffraction processing and strain mapping in 4D-STEM. Ultramicroscopy 2022;236:113513.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/