REFERENCES

1. Müller EW, Panitz JA, Mclane SB. The atom-probe field ion microscope. Rev Sci Instrum 1968;39:83-6.

2. Gault B, Moody MP, Cairney JM, Ringer SP. Atom probe microscopy. Springer Science & Business Media; 2012. Available from: https://link.springer.com/book/10.1007/978-1-4614-3436-8 [Last accessed on 31 Oct 2023].

3. Miller MK, Forbes RG. The local electrode atom probe. Springer; 2014. Available from: https://link.springer.com/chapter/10.1007/978-1-4899-7430-3_5 [Last accessed on 31 Oct 2023].

4. Lefebvre W, Vurpillot F, Sauvage X. Atom probe tomography: put theory into practice. Academic Press; 2016. Available from: https://shop.elsevier.com/books/atom-probe-tomography/lefebvre/978-0-12-804647-0 [Last accessed on 31 Oct 2023].

5. De Geuser F, Gault B. Metrology of small particles and solute clusters by atom probe tomography. Acta Mater 2020;188:406-15.

6. Gault B, Chiaramonti A, Cojocaru-Mirédin O, et al. Atom probe tomography. Nat Rev Methods Primers 2021;1:51.

7. Kelly TF, Miller MK. Invited review article: atom probe tomography. Rev Sci Instrum 2007;78:031101.

8. Geiser BP, Kelly TF, Larson DJ, Schneir J, Roberts JP. Spatial distribution maps for atom probe tomography. Microsc Microanal 2007;13:437-47.

9. Müller EW. Resolution of the atomic structure of a metal surface by the field ion microscope. J Appl Phys 1956;27:474-6.

10. Jacoby M. Atomic imaging turns 50. Chem Eng News 2005;83:13-6. Available from: https://cen.acs.org/articles/83/i48/Atomic-Imaging-Turns-50.html#:~:text=By%20the%20early%201950s%2C%20far,with%20a%20field%20ion%20microscope. [Last accessed on 31 Oct 2023]

11. Wagner A, Hall TM, Seidman DN. Simplified method for the calibration of an atom-probe field-ion microscope. Rev Sci Instrum 1975;46:1032-4.

12. Brenner S, Mckinney J. Construction and performance of an FIM-atom probe. Surf Sci 1970;23:88-111.

13. Kelly TF, Panitz JA. The first fifty years of atom probe. Micros Today 2017;25:12-7.

14. Larson DJ, Prosa TJ, Ulfig RM, Geiser BP, Kelly TF. Local electrode atom probe tomography. New York: Springer Science; 2013. Available from: https://link.springer.com/content/pdf/10.1007/978-1-4614-8721-0.pdf [Last accessed on 31 Oct 2023].

15. Chen YS, Liu PY, Niu R, et al. Atom probe tomography for the observation of hydrogen in materials: a review. Microsc Microanal 2023;29:1-15.

16. Grandfield K, Micheletti C, Deering J, Arcuri G, Tang T, Langelier B. Atom probe tomography for biomaterials and biomineralization. Acta Biomater 2022;148:44-60.

17. Rajan K. Atom probe tomography - a high throughput screening tool for atomic scale chemistry. Comb Chem High Throughput Screen 2011;14:198-205.

18. Miller M, Forbes R. Atom probe tomography. Mater Charact 2009;60:461-9.

19. Silaeva EP, Karahka M, Kreuzer H. Atom probe tomography and field evaporation of insulators and semiconductors: theoretical issues. Curr Opin Solid State Mater Sci 2013;17:211-6.

20. Reddy SM, Saxey DW, Rickard WDA, et al. Atom probe tomography: development and application to the geosciences. Geostandard Geoanalytic Res 2020;44:5-50.

21. Liu J. Advances and applications of atomic-resolution scanning transmission electron microscopy. Microsc Microanal 2021;27:943-95.

22. Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 2007;107:131-9.

23. Tegg L, Breen AJ, Huang S, Sato T, Ringer SP, Cairney JM. Characterising the performance of an ultrawide field-of-view 3D atom probe. Ultramicroscopy 2023;253:113826.

24. Shen PS. The 2017 nobel prize in chemistry: cryo-EM comes of age. Anal Bioanal Chem 2018;410:2053-7.

25. Moore EB, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 2011;479:506-8.

26. Dubochet J, Adrian M, Chang JJ, et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988;21:129-228.

27. Gerstl S, Wepf R. Methods in creating, transferring, & measuring cryogenic samples for APT. Microsc Microanal 2015;21:517-8.

28. Perea DE, Gerstl SSA, Chin J, Hirschi B, Evans JE. An environmental transfer hub for multimodal atom probe tomography. Adv Struct Chem Imaging 2017;3:12.

29. McCarroll IE, Bagot PAJ, Devaraj A, Perea DE, Cairney JM. New frontiers in atom probe tomography: a review of research enabled by cryo and/or vacuum transfer systems. Mater Today Adv 2020;7:100090.

30. El-Zoka AA, Stephenson LT, Kim SH, Gault B, Raabe D. The fate of water in hydrogen-based iron oxide reduction. Adv Sci 2023;10:e2300626.

31. Stender P, Gault B, Schwarz TM, et al. Status and direction of atom probe analysis of frozen liquids. Microsc Microanal 2022;28:1150-67.

32. El-Zoka AA, Kim SH, Deville S, Newman RC, Stephenson LT, Gault B. Enabling near-atomic-scale analysis of frozen water. Sci Adv 2020;6:eabd6324.

33. Chen Y, Bagot PA, Moody MP, Haley D. Observing hydrogen in steel using cryogenic atom probe tomography: a simplified approach. Int J Hydrog Energy 2019;44:32280-91.

34. Chen YS, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 2020;367:171-5.

35. Moody MP, Vella A, Gerstl SS, Bagot PA. Advances in atom probe tomography instrumentation: implications for materials research. MRS Bull 2016;41:40-5.

36. Stephenson LT, Szczepaniak A, Mouton I, et al. The laplace project: an integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions. PLoS One 2018;13:e0209211.

37. Miller MK. Atom probe microanalysis, principles and applications to materials problems. Mater Res Soc 1989. Available from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/064/19064040.pdf?r=1 [Last accessed on 31 Oct 2023].

38. Melmed AJ. The art and science and other aspects of making sharp tips. J Vac Sci Technol B 1991;9:601-8.

39. Schreiber DK, Perea DE, Ryan JV, Evans JE, Vienna JD. A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy 2018;194:89-99.

40. Chen YS, Haley D, Gerstl SS, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 2017;355:1196-9.

41. Zachman MJ, de Jonge N, Fischer R, Jungjohann KL, Perea DE. Cryogenic specimens for nanoscale characterization of solid-liquid interfaces. MRS Bull 2019;44:949-55.

42. Meng K, Schwarz TM, Weikum EM, Stender P, Schmitz G. Frozen n -tetradecane investigated by cryo-atom probe tomography. Microsc Microanal 2022;28:1289-99.

43. Ackerman AK, Vorontsov VA, Bantounas I, et al. Interface characteristics in an α + β titanium alloy. Phys Rev Mater 2020:4.

44. Zhang S, Gervinskas G, Qiu S, et al. Methods of preparing nanoscale vitreous ice needles for high-resolution cryogenic characterization. Nano Lett 2022;22:6501-8.

45. Lilensten L, Gault B. New approach for FIB-preparation of atom probe specimens for aluminum alloys. PLoS One 2020;15:e0231179.

46. Chang Y, Lu W, Guénolé J, et al. Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials. Nat Commun 2019;10:942.

47. Halpin JE, Webster RWH, Gardner H, Moody MP, Bagot PAJ, MacLaren DA. An in-situ approach for preparing atom probe tomography specimens by xenon plasma-focussed ion beam. Ultramicroscopy 2019;202:121-7.

48. Marko M, Hsieh C, Schalek R, Frank J, Mannella C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods 2007;4:215-7.

49. Rigort A, Bäuerlein FJ, Villa E, et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 2012;109:4449-54.

50. Mahamid J, Schampers R, Persoon H, Hyman AA, Baumeister W, Plitzko JM. A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J Struct Biol 2015;192:262-9.

51. Parmenter CD, Fay MW, Hartfield C, Eltaher HM. Making the practically impossible “merely difficult”-cryogenic FIB lift-out for “damage free” soft matter imaging. Microsc Res Tech 2016;79:298-303.

52. Saxey DW, Cairney JM, McGrouther D, Honma T, Ringer SP. Atom probe specimen fabrication methods using a dual FIB/SEM. Ultramicroscopy 2007;107:756-60.

53. Gordon LM, Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 2011;469:194-7.

54. Gordon LM, Tran L, Joester D. Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 2012;6:10667-75.

55. Gordon LM, Cohen MJ, MacRenaris KW, Pasteris JD, Seda T, Joester D. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 2015;347:746-50.

56. Fontaine A, Zavgorodniy A, Liu H, Zheng R, Swain M, Cairney J. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci Adv 2016;2:e1601145.

57. Langelier B, Wang X, Grandfield K. Atomic scale chemical tomography of human bone. Sci Rep 2017;7:39958.

58. Sundell G, Dahlin C, Andersson M, Thuvander M. The bone-implant interface of dental implants in humans on the atomic scale. Acta Biomater 2017;48:445-50.

59. Prosa TJ, Keeney SK, Kelly TF. Atom probe tomography analysis of poly(3-alkylthiophene)s. J Microsc 2010;237:155-67.

60. Rusitzka KAK, Stephenson LT, Szczepaniak A, et al. A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Sci Rep 2018;8:17615.

61. Perea DE, Liu J, Bartrand J, et al. Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin. Sci Rep 2016;6:22321.

62. Sundell G, Hulander M, Pihl A, Andersson M. Atom probe tomography for 3D structural and chemical analysis of individual proteins. Small 2019;15:e1900316.

63. Narayan K, Prosa TJ, Fu J, Kelly TF, Subramaniam S. Chemical mapping of mammalian cells by atom probe tomography. J Struct Biol 2012;178:98-107.

64. Martin ML, Connolly MJ, DelRio FW, Slifka AJ. Hydrogen embrittlement in ferritic steels. Appl Phys Rev 2020:7.

65. Robertson IM, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood. Metall Mater Trans B 2015;46:1085-103.

66. Pressouyre G. Trap theory of hydrogen embrittlement. Acta Metall 1980;28:895-911.

67. Bhadeshia HKDH. Prevention of hydrogen embrittlement in steels. ISIJ Int 2016;56:24-36.

68. Chang Y, Breen AJ, Tarzimoghadam Z, et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater 2018;150:273-80.

69. Chang Y, Zhang S, Liebscher CH, et al. Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-hydride? Scr Mater 2020;178:39-43.

70. Haley D, Merzlikin S, Choi P, Raabe D. Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int J Hydrog Energy 2014;39:12221-9.

71. Breen AJ, Stephenson LT, Sun B, et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater 2020;188:108-20.

72. Sundell G, Thuvander M, Andrén HO. Hydrogen analysis in APT: methods to control adsorption and dissociation of H2. Ultramicroscopy 2013;132:285-9.

73. Takahashi J, Kawakami K, Kobayashi Y, Tarui T. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater 2010;63:261-4.

74. Zhu X, Li W, Zhao H, Wang L, Jin X. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel. Int J Hydrog Energy 2014;39:13031-40.

75. Meier MS, Jones ME, Felfer PJ, Moody MP, Haley D. Extending estimating hydrogen content in atom probe tomography experiments where H2 molecule formation occurs. Microsc Microanal 2022;28:1231-44.

76. Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scr Mater 2012;67:213-6.

77. Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater 2018;153:193-204.

78. Gangloff RP, Somerday BP. Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterisation and effects on particular alloy classes. Elsevier; 2012. Available from: https://shop.elsevier.com/books/gaseous-hydrogen-embrittlement-of-materials-in-energy-technologies/gangloff/978-1-84569-677-1 [Last accessed on 31 Oct 2023].

79. Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022;602:437-41.

80. Schwarz TM, Weikum EM, Meng K, et al. Field evaporation and atom probe tomography of pure water tips. Sci Rep 2020;10:20271.

81. Schwarz TM, Dietrich CA, Ott J, et al. 3D sub-nanometer analysis of glucose in an aqueous solution by cryo-atom probe tomography. Sci Rep 2021;11:11607.

82. Devaraj A, Gu M, Colby R, et al. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun 2015;6:8014.

83. Pfeiffer B, Maier J, Arlt J, Nowak C. In Situ atom probe deintercalation of lithium-manganese-oxide. Microsc Microanal 2017;23:314-20.

84. Greiwe GH, Balogh Z, Schmitz G. Atom probe tomography of lithium-doped network glasses. Ultramicroscopy 2014;141:51-5.

85. Kim SH, Antonov S, Zhou X, et al. Atom probe analysis of electrode materials for Li-ion batteries: challenges and ways forward. J Mater Chem A Mater 2022;10:4926-35.

86. Singh MP, Kim SH, Zhou X, et al. Near-atomic-scale evolution of the surface chemistry in Li[Ni,Mn,Co]O2 cathode for Li-ion batteries stored in air. Adv Energy Sustain Res 2023;4:2200121.

87. McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 2013;25:4966-85.

88. Lai SC. Solid lithium-silicon electrode. J Electrochem Soc 1976;123:1196.

89. Kim SH, Dong K, Zhao H, et al. Understanding the degradation of a model Si anode in a Li-ion battery at the atomic scale. J Phys Chem Lett 2022;13:8416-21.

90. Usukura J, Narita A, Matsumoto T, et al. A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Sci Rep 2021;11:21406.

91. Kuzmina M, Herbig M, Ponge D, Sandlöbes S, Raabe D. Linear complexions: confined chemical and structural states at dislocations. Science 2015;349:1080-3.

92. Huang L, Chen D, Xie D, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron. Nat Mater 2023;22:710-6.

93. Greenwood DJ, Dos Santos MS, Huang S, et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 2019;364:1279-82.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/