REFERENCES

1. Wang F, Zhang Z, Shakir I, Yu C, Xu Y. 2D polymer nanosheets for membrane separation. Adv Sci 2022;9:e2103814.

2. Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Covalent organic frameworks for membrane separation. Chem Soc Rev 2019;48:2665-81.

3. Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chem Soc Rev 2017;46:7124-44.

4. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 2017;356:eaab0530.

5. Wang S, Yang L, He G, et al. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem Soc Rev 2020;49:1071-89.

6. Kim JH, Choi Y, Kang J, et al. Shear-induced assembly of high-aspect-ratio graphene nanoribbon nanosheets in a confined microchannel: Membrane fabrication for ultrafast organic solvent nanofiltration. Carbon 2022;191:563-70.

7. Pakulski D, Czepa W, Buffa SD, Ciesielski A, Samorì P. Atom-thick membranes for water purification and blue energy harvesting. Adv Funct Mater 2020;30:1902394.

8. Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022;285:120228.

9. Liu X, Jiang B, Yin X, Ma H, Hsiao BS. Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep Purif Technol 2020;233:115976.

10. Ren Y, Ma Y, Min G, Zhang W, Lv L, Zhang W. A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: additional functions of adsorption and catalytic oxidation. Sci Total Environ 2021;762:143083.

11. Zhao S, Liao Z, Fane A, et al. Engineering antifouling reverse osmosis membranes: a review. Desalination 2021;499:114857.

12. Xing C, Liu L, Guo X, et al. Efficient water purification using stabilized MXene nanofiltration membrane with controlled interlayer spacings. Sep Purif Technol 2023;317:123774.

13. Xing C, Liu C, Lai C, Zhang S. Tuning d-spacing of graphene oxide nanofiltration membrane for effective dye/salt separation. Rare Met 2023;42:418-29.

14. Xing C, Han J, Pei X, et al. Tunable graphene oxide nanofiltration membrane for effective dye/salt separation and desalination. ACS Appl Mater Interfaces 2021;13:55339-48.

15. Surwade SP, Smirnov SN, Vlassiouk IV, et al. Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 2015;10:459-64.

16. Joshi RK, Carbone P, Wang FC, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014;343:752-4.

17. Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed 2017;56:1825-9.

18. Caglar M, Silkina I, Brown BT, et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano 2020;14:2729-38.

19. Wang Y, Li L, Wei Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew Chem Int Ed 2017;56:8974-80.

20. Ries L, Petit E, Michel T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat Mater 2019;18:1112-7.

21. Jia P, Wen Q, Liu D, et al. Highly efficient ionic photocurrent generation through WS2-based 2D nanofluidic channels. Small 2019;15:e1905355.

22. Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J Membr Sci 2018;567:89-103.

23. Jiang Z, Liu H, Ahmed SA, et al. Insight into ion transfer through the sub-nanometer channels in zeolitic imidazolate frameworks. Angew Chem Int Ed 2017;129:4845-9.

24. Li X, Zhang H, Wang P, et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat Commun 2019;10:2490.

25. Kuehl VA, Yin J, Duong PHH, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J Am Chem Soc 2018;140:18200-7.

26. Danda G, Drndić M. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Curr Opin Biotechnol 2019;55:124-33.

27. Prozorovska L, Kidambi PR. State-of-the-art and future prospects for atomically thin membranes from 2D materials. Adv Mater 2018;30:e1801179.

28. Kim S, Wang H, Lee YM. 2D Nanosheets and their composite membranes for water, gas, and ion separation. Angew Chem Int Ed 2019;131:17674-89.

29. Kang Y, Xia Y, Wang H, Zhang X. 2D laminar membranes for selective water and ion transport. Adv Funct Mater 2019;29:1902014.

30. Koltonow AR, Huang J. Two-dimensional nanofluidics. Science 2016;351:1395-6.

31. Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017;117:6225-331.

32. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science 2013;340:1226419.

33. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

34. Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA 2005;102:10451-3.

35. Paton KR, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 2014;13:624-30.

36. Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011;331:568-71.

37. Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014;346:1356-9.

38. Achee TC, Sun W, Hope JT, et al. High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 2018;8:14525.

39. Wang X, Narita A, Müllen K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat Rev Chem 2018;2:0100.

40. Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322-31.

41. Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 2012;112:4124-55.

42. Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc Chem Res 2015;48:136-43.

43. Varoon K, Zhang X, Elyassi B, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011;334:72-5.

44. Ren J, Liu X, Zhang L, Liu Q, Gao R, Dai W. Thermal oxidative etching method derived graphitic C3N4: highly efficient metal-free catalyst in the selective epoxidation of styrene. RSC Adv 2017;7:5340-8.

45. Yu J, Li J, Zhang W, Chang H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem Sci 2015;6:6705-16.

46. Shi Y, Li H, Li LJ. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev 2015;44:2744-56.

47. Ou M, Wang X, Yu L, et al. The emergence and evolution of borophene. Adv Sci 2021;8:2001801.

48. Huang S, Dakhchoune M, Luo W, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat Commun 2018;9:2632.

49. Zhang J, Lin L, Sun L, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv Mater 2017;29:1700639.

50. Chen Y, Gong XL, Gai JG. Progress and challenges in transfer of large-area graphene films. Adv Sci 2016;3:1500343.

51. Jeon MY, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017;543:690-4.

52. Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Surface nano-architecture of a metal-organic framework. Nat Mater 2010;9:565-71.

53. Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 2015;14:48-55.

54. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev 2012;41:6010-22.

55. Dai W, Shao F, Szczerbiński J, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew Chem Int Ed 2016;128:221-5.

56. Kandambeth S, Biswal BP, Chaudhari HD, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv Mater 2017;29:1603945.

57. Moreno C, Vilas-Varela M, Kretz B, et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 2018;360:199-203.

58. Fischbein MD, Drndić M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 2008;93:113107.

59. Koenig SP, Wang L, Pellegrino J, Bunch JS. Selective molecular sieving through porous graphene. Nat Nanotechnol 2012;7:728-32.

60. Celebi K, Buchheim J, Wyss RM, et al. Ultimate permeation across atomically thin porous graphene. Science 2014;344:289-92.

61. Russo CJ, Golovchenko JA. Atom-by-atom nucleation and growth of graphene nanopores. Proc Natl Acad Sci USA 2012;109:5953-7.

62. O’Hern SC, Boutilier MS, Idrobo JC, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 2014;14:1234-41.

63. Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011;332:1537-41.

64. Zhang LL, Zhao X, Stoller MD, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 2012;12:1806-12.

65. Zhao X, Hayner CM, Kung MC, Kung HH. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 2011;5:8739-49.

66. Wang X, Jiao L, Sheng K, Li C, Dai L, Shi G. Solution-processable graphene nanomeshes with controlled pore structures. Sci Rep 2013;3:1996.

67. Palaniselvam T, Valappil MO, Illathvalappil R, Kurungot S. Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ Sci 2014;7:1059.

68. Zhou D, Cui Y, Xiao PW, Jiang MY, Han BH. A general and scalable synthesis approach to porous graphene. Nat Commun 2014;5:4716.

69. Gilbert SM, Dunn G, Azizi A, et al. Fabrication of subnanometer-precision nanopores in hexagonal boron nitride. Sci Rep 2017;7:15096.

70. Feng J, Graf M, Liu K, et al. Single-layer MoS2 nanopores as nanopower generators. Nature 2016;536:197-200.

71. Feng J, Liu K, Graf M, et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett 2015;15:3431-8.

72. Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013;499:419-25.

73. Radha B, Esfandiar A, Wang FC, et al. Molecular transport through capillaries made with atomic-scale precision. Nature 2016;538:222-5.

74. Esfandiar A, Radha B, Wang FC, et al. Size effect in ion transport through angstrom-scale slits. Science 2017;358:511-3.

75. Keerthi A, Geim AK, Janardanan A, et al. Ballistic molecular transport through two-dimensional channels. Nature 2018;558:420-4.

76. Hu S, Lozada-Hidalgo M, Wang FC, et al. Proton transport through one-atom-thick crystals. Nature 2014;516:227-30.

77. Gopinadhan K, Hu S, Esfandiar A, et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 2019;363:145-8.

78. Algara-Siller G, Lehtinen O, Wang FC, et al. Square ice in graphene nanocapillaries. Nature 2015;519:443-5.

79. Fumagalli L, Esfandiar A, Fabregas R, et al. Anomalously low dielectric constant of confined water. Science 2018;360:1339-42.

80. Mouterde T, Keerthi A, Poggioli AR, et al. Molecular streaming and its voltage control in ångström-scale channels. Nature 2019;567:87-90.

81. Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 2016;10:3398-409.

82. Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization of graphene oxide paper. Nature 2007;448:457-60.

83. Tsou C, An Q, Lo S, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J Membr Sci 2015;477:93-100.

84. Zhang M, Sun J, Mao Y, Liu G, Jin W. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. J Membr Sci 2019;574:196-204.

85. Kim HW, Yoon HW, Yoon SM, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013;342:91-5.

86. Chi C, Wang X, Peng Y, et al. Facile preparation of graphene oxide membranes for gas separation. Chem Mater 2016;28:2921-7.

87. Guan K, Shen J, Liu G, Zhao J, Zhou H, Jin W. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Sep Purif Technol 2017;174:126-35.

88. Ibrahim AF, Lin Y. Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci 2018;190:312-9.

89. Akbari A, Sheath P, Martin ST, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun 2016;7:10891.

90. Zhong J, Sun W, Wei Q, Qian X, Cheng HM, Ren W. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat Commun 2018;9:3484.

91. Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 2013;47:3715-23.

92. Hu M, Mi B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Membr Sci 2014;469:80-7.

93. Song X, Zambare RS, Qi S, et al. Charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes. ACS Appl Mater Interfaces 2017;9:41482-95.

94. Zhao J, Zhu Y, Pan F, et al. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. J Membr Sci 2015;487:162-72.

95. Zhao D, Chen Z, Liao X. Microstructural evolution and ferroelectricity in HfO2 films. Microstructures 2022;2:2022007.

96. Chen Z, Liao X, Zhang S. The visible hand behind properties. Microstructures 2021;1:2021001.

97. Xing C, Chen H, Qian S, et al. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem 2022;8:1201-30.

98. Xing C, Chen H, Zhang S. Powering 10-Ah-level Li-S pouch cell via a smart “skin”. Matter 2022;5:2523-5.

99. Abraham J, Vasu KS, Williams CD, et al. Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 2017;12:546-50.

100. Li W, Wu W, Li Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano 2018;12:9309-17.

101. Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017;550:380-3.

102. Qiu L, Zhang X, Yang W, Wang Y, Simon GP, Li D. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem Commun 2011;47:5810-2.

103. Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 2013;23:3693-700.

104. Liu H, Wang H, Zhang X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv Mater 2015;27:249-54.

105. Hung W, Tsou C, De Guzman M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d -spacing. Chem Mater 2014;26:2983-90.

106. Zhang M, Mao Y, Liu G, Liu G, Fan Y, Jin W. Molecular bridges stabilize graphene oxide membranes in water. Angew Chem Int Ed 2020;59:1689-95.

107. Jia Z, Shi W. Tailoring permeation channels of graphene oxide membranes for precise ion separation. Carbon 2016;101:290-5.

108. Lim M, Choi Y, Kim J, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. J Membr Sci 2017;521:1-9.

109. Wang S, Wu Y, Zhang N, et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy Environ Sci 2016;9:3107-12.

110. Zhang P, Gong J, Zeng G, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem Eng J 2017;322:657-66.

111. Xu XL, Lin FW, Du Y, Zhang X, Wu J, Xu ZK. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection. ACS Appl Mater Inter 2016;8:12588-93.

112. Fei F, Cseri L, Szekely G, Blanford CF. Robust covalently cross-linked polybenzimidazole/graphene oxide membranes for high-flux organic solvent nanofiltration. ACS Appl Mater Inter 2018;10:16140-7.

113. Yang J, Gong D, Li G, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv Mater 2018;30:e1705775.

114. Liu Y, Xu L, Liu J, et al. Graphene oxides cross-linked with hyperbranched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead (II) ions. Chem Eng J 2016;285:698-708.

115. Nam YT, Choi J, Kang KM, Kim DW, Jung HT. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding. ACS Appl Mater Inter 2016;8:27376-82.

116. Wang N, Ji S, Zhang G, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chem Eng J 2012;213:318-29.

117. Wang S, Xie Y, He G, et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angew Chem Int Ed 2017;56:14246-51.

118. Ran J, Chu C, Pan T, et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J Mater Chem A 2019;7:8085-91.

119. Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem Commun 2014;50:13089-92.

120. Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl Mater Inter 2015;7:8147-55.

121. Goh K, Jiang W, Karahan HE, et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv Funct Mater 2015;25:7348-59.

122. Zhang M, Guan K, Shen J, Liu G, Fan Y, Jin W. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AIChE J 2017;63:5054-63.

123. Li C, Sun W, Lu Z, Ao X, Yang C, Li S. Systematic evaluation of TiO2-GO-modified ceramic membranes for water treatment: retention properties and fouling mechanisms. Chem Eng J 2019;378:122138.

124. Wang S, Mahalingam D, Sutisna B, Nunes SP. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. J Mater Chem A 2019;7:11673-82.

125. Guo H, Kong G, Yang G, et al. Cross-linking between sodalite nanoparticles and graphene oxide in composite membranes to trigger high gas permeance, selectivity, and stability in hydrogen separation. Angew Chem Int Ed 2020;132:6343-7.

126. Guan K, Zhao D, Zhang M, et al. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. J Membr Sci 2017;542:41-51.

127. Li W, Zhang Y, Su P, et al. Metal-organic framework channelled graphene composite membranes for H2/CO2 separation. J Mater Chem A 2016;4:18747-52.

128. Khan NA, Yuan J, Wu H, et al. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux. ACS Appl Mater Inter 2019;11:28978-86.

129. Sui X, Yuan Z, Liu C, et al. Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane. J Mater Chem A 2020;8:9713-25.

130. Mao Y, Zhang M, Cheng L, et al. Bola-amphiphile-imidazole embedded GO membrane with enhanced solvent dehydration properties. J Membr Sci 2020;595:117545.

131. Wang Z, Tu Q, Zheng S, Urban JJ, Li S, Mi B. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett 2017;17:7289-98.

132. Ran J, Pan T, Wu Y, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angew Chem Int Ed 2019;58:16463-8.

133. Wang J, Zhang Z, Zhu J, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat Commun 2020;11:3540.

134. Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett 2012;12:3602-8.

135. Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat Mater 2017;16:1198-202.

136. Li H, Song Z, Zhang X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013;342:95-8.

137. Heiranian M, Farimani AB, Aluru NR. Water desalination with a single-layer MoS2 nanopore. Nat Commun 2015;6:8616.

138. Yang Y, Yang X, Liang L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019;364:1057-62.

139. Ibrahim A, Lin Y. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. J Membr Sci 2018;550:238-45.

140. Amadei CA, Montessori A, Kadow JP, Succi S, Vecitis CD. Role of oxygen functionalities in graphene oxide architectural laminate subnanometer spacing and water transport. Environ Sci Technol 2017;51:4280-8.

141. Chen J, Li Y, Huang L, Jia N, Li C, Shi G. Size Fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv Mater 2015;27:3654-60.

142. Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE J 2016;62:2843-52.

143. Geng H, Yao B, Zhou J, et al. Size fractionation of graphene oxide nanosheets via controlled directional freezing. J Am Chem Soc 2017;139:12517-23.

144. Sun P, Zheng F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. ACS Nano 2014;8:850-9.

145. Nie L, Goh K, Wang Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Sci Adv 2020;6:eaaz9184.

146. Ying Y, Sun L, Wang Q, Fan Z, Peng X. In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation. RSC Adv 2014;4:21425.

147. Li Y, Zhao W, Weyland M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination. Environ Sci Technol 2019;53:8314-23.

148. Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew Chem Int Ed 2017;129:9889-93.

149. Shinde DB, Sheng G, Li X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J Am Chem Soc 2018;140:14342-9.

150. Xi Y, Liu Z, Ji J, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. J Membr Sci 2018;550:208-18.

151. Li Y, Yuan S, Xia Y, et al. Mild annealing reduced graphene oxide membrane for nanofiltration. J Membr Sci 2020;601:117900.

152. Saraswat V, Jacobberger RM, Ostrander JS, et al. Invariance of water permeance through size-differentiated graphene oxide laminates. ACS Nano 2018;12:7855-65.

153. Kang Y, Qiu R, Jian M, et al. The role of nanowrinkles in mass transport across graphene-based membranes. Adv Funct Mater 2020;30:2003159.

154. Huang H, Song Z, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 2013;4:2979.

155. Sun L, Ying Y, Huang H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano 2014;8:6304-11.

156. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2008;2:572-8.

157. Ding L, Li L, Liu Y, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat Sustain 2020;3:296-302.

158. Kim S, Lin X, Ou R, et al. Highly crosslinked, chlorine tolerant polymer network entwined graphene oxide membrane for water desalination. J Mater Chem A 2017;5:1533-40.

159. Kim S, Ou R, Hu Y, et al. Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination. J Membr Sci 2018;562:47-55.

160. Xie X, Chen C, Zhang N, Tang Z, Jiang J, Xu Y. Microstructure and surface control of MXene films for water purification. Nat Sustain 2019;2:856-62.

161. Alkhouzaam A, Qiblawey H, Khraisheh M. Polydopamine functionalized graphene oxide as membrane nanofiller: spectral and structural studies. Membranes 2021;11:86.

162. Xing C, Zhang Y, Huang R, et al. Anti-swelling polyethyleneimine-modified MXene nanofiltration membranes for efficient and selective molecular separation. EcoMat 2023;5:e12300.

163. Qi B, He X, Zeng G, et al. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nat Commun 2017;8:825.

164. Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation. Nat Commun 2018;9:155.

165. Zhou F, Tien HN, Xu WL, et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nat Commun 2017;8:2107.

166. Lozada-Hidalgo M, Hu S, Marshall O, et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 2016;351:68-70.

167. Chen X, Zhu Y, Yu H, et al. Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. J Membr Sci 2021;621:118934.

168. Ghazi ZA, He X, Khattak AM, et al. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv Mater 2017;29:1606817.

169. Yang H, Qiao Y, Chang Z, Deng H, He P, Zhou H. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv Mater 2020;32:e2004240.

170. Xu R, Kang Y, Zhang W, Zhang X, Pan B. Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport. Angew Chem Int Ed 2022;61:e202115443.

171. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC. Production and processing of graphene and 2D crystals. Mater Today 2012;15:564-89.

172. Navik R, Gai Y, Wang W, Zhao Y. Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol. Ultrason Sonochem 2018;48:96-102.

173. Dhanabalan SC, Ponraj JS, Guo Z, Li S, Bao Q, Zhang H. Emerging trends in phosphorene fabrication towards next generation devices. Adv Sci 2017;4:1600305.

174. Batool S, Idrees M, Zhang SR, Han ST, Zhou Y. Novel charm of 2D materials engineering in memristor: when electronics encounter layered morphology. Nanoscale Horiz 2022;7:480-507.

175. Duraisamy S, Ganguly A, Sharma PK, Benson J, Davis J, Papakonstantinou P. One-step hydrothermal synthesis of phase-engineered MoS2/MoO3 electrocatalysts for hydrogen evolution reaction. ACS Appl Nano Mater 2021;4:2642-56.

176. Miao Y, Tsapatsis M. Electron beam patterning of metal-organic frameworks. Chem Mater 2021;33:754-60.

177. Lu X, Wang R, Hao L, et al. Oxidative etching of MoS2/WS2 nanosheets to their QDs by facile UV irradiation. Phys Chem Chem Phys 2016;18:31211-6.

178. Wei Y, Pastuovic Z, Shen C, Murphy T, Gore DB. Ion beam engineered graphene oxide membranes for mono-/di-valent metal ions separation. Carbon 2020;158:598-606.

179. Kim B, Im S, Yoo G. Performance evaluation of CNN-based end-point detection using in-situ plasma etching data. Electronics 2021;10:49.

180. Huang X, Cen D, Wei R, Fan H, Bao Z. Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery. ACS Appl Mater Inter 2019;11:26854-62.

181. Pasquarelli RM, Ginley DS, O’Hayre R. Solution processing of transparent conductors: from flask to film. Chem Soc Rev 2011;40:5406-41.

182. Zhu L, Wang H, Bai J, Liu J, Zhang Y. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination. Desalination 2017;420:145-57.

183. Chen L, Moon J, Ma X, et al. High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon 2018;130:487-94.

184. Zhang S, Liao S, Qi F, et al. Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. J Hazard Mater 2020;384:121367.

185. Han R, Wu P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. J Mater Chem A 2019;7:6475-81.

186. Kang KM, Kim DW, Ren CE, et al. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl Mater Inter 2017;9:44687-94.

187. Liu T, Liu X, Graham N, Yu W, Sun K. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J Membr Sci 2020;593:117431.

188. Wei S, Xie Y, Xing Y, et al. Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J Membr Sci 2019;582:414-22.

189. Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Membr Sci 2020;607:118139.

190. Pandey RP, Rasool K, Madhavan VE, Aïssa B, Gogotsi Y, Mahmoud KA. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J Mater Chem A 2018;6:3522-33.

191. Lee W, Bondaz L, Huang S, He G, Dakhchoune M, Agrawal KV. Centimeter-scale gas-sieving nanoporous single-layer graphene membrane. J Membr Sci 2021;618:118745.

192. Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022;13:7299.

193. Ma C, Gao G, Liu H, Liu Y, Zhang X. Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. J Membr Sci 2022;644:120167.

194. Wang P, Peng Y, Zhu C, et al. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angew Chem Int Ed 2021;60:19047-52.

195. Dou H, Jiang B, Xu M, et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane separation. Angew Chem Int Ed 2019;131:14107-13.

196. Zhou F, Dong Q, Chen J, et al. Printed graphene oxide-based membranes for gas separation and carbon capture. Chem Eng J 2022;430:132942.

197. Sheng F, Wu B, Li X, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv Mater 2021;33:e2104404.

198. Niu B, Xin W, Qian Y, Kong XY, Jiang L, Wen L. Covalent organic frameworks embedded in polystyrene membranes for ion sieving. Chem Commun 2022;58:5403-6.

199. Wang Z, Huang L, Dong X, et al. Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation. Nat Commun 2023;14:261.

200. He M, Liu Z, Wang L, et al. Carboxymethylcellulose (CMC)/glutaraldehyde (GA)-modified Ti3C2Tx membrane and its efficient ion sieving performance. J Membr Sci 2023;675:121541.

201. Leong ZY, Han Z, Wang G, Li D, Yang SA, Yang HY. Electric field modulated ion-sieving effects of graphene oxide membranes. J Mater Chem A 2021;9:244-53.

202. Cao H, Xia Y, Lu Y, et al. MOF-801 polycrystalline membrane with sub-10 nm polymeric assembly layer for ion sieving and flow battery storage. AIChE J 2022;68:e17657.

203. Bing S, Xian W, Chen S, et al. Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter 2021;4:2027-38.

204. Su S, Zhang Y, Peng S, et al. Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity. Nat Commun 2022;13:4894.

205. Liang S, Wang S, Chen L, Fang H. Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions. Sep Purif Technol 2020;241:116738.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/