REFERENCES
1. Gil-Santos E, Ramos D, Martínez J, et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat Nanotechnol 2010;5:641-5.
2. Terabe K, Hasegawa T, Nakayama T, Aono M. Quantized conductance atomic switch. Nature 2005;433:47-50.
3. Lord AM, Ramasse QM, Kepaptsoglou DM, Periwal P, Ross FM, Wilks SP. Stability of schottky and ohmic Au nanocatalysts to ZnO nanowires. Nano Lett 2017;17:6626-36.
4. Cui L, Jeong W, Hur S, et al. Quantized thermal transport in single-atom junctions. Science 2017;355:1192-5.
5. Jalabert L, Sato T, Ishida T, Fujita H, Chalopin Y, Volz S. Ballistic thermal conductance of a lab-in-a-TEM made Si nanojunction. Nano Lett 2012;12:5213-7.
6. Smogunov A, Dal Corso A, Delin A, Weht R, Tosatti E. Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nat Nanotechnol 2008;3:22-5.
7. Fernández-rossier J, Jacob D, Untiedt C, Palacios JJ. Transport in magnetically ordered Pt nanocontacts. Phys Rev B 2005;72:224418.
8. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 2004;92:077402.
9. Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2010;2:454-60.
10. Strigl F, Espy C, Bückle M, Scheer E, Pietsch T. Emerging magnetic order in platinum atomic contacts and chains. Nat Commun 2015;6:6172.
11. Ma X, Zhao X, Wang T. Effect of strain on the electronic and magnetic properties of an Fe-doped WSe2 monolayer. RSC Adv 2016;6:69758-63.
12. Cai X, Niu C, Wang J, Yu W, Ren X, Zhu Z. Magnetic engineering in 3D transition metals on phosphorene by strain. Phys Lett A 2017;381:1236-40.
13. Jiang C, Yang Z, Xiong W, Wang F. Effect of strain engineering on magnetism-induced valley splitting in WSe2 based on the
14. Yi B, Pang R, Ren X, et al. Phase transition of nanoscale Au atom chains on NiAl(110). Phys Lett A 2020;384:126183.
15. Li SF, Li H, Xue X, et al. Hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding. Phys Rev B 2010;82:035443.
16. Wang J, Wang L, Li Y, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6. Adv Sci 2022;9:e2203442.
17. Meyers MA, Chawla KK. Mechanical behavior of materials. Cambridge University Press; 2008. pp. 154-96. Available from: https://ceimusb.wordpress.com/wp-content/uploads/2015/04/mechanicalbehaviormeyers.pdf [Last accessed on 17 Jun 2023].
18. Lagos MJ, Sato F, Galvão DS, Ugarte D. Mechanical deformation of nanoscale metal rods: when size and shape matter. Phys Rev Lett 2011;106:055501.
19. Yang Y, Zhao C, Bai S, Wang C, Niu C. Activating MoS2 basal planes for hydrogen evolution through the as doping and strain. Phys Lett A 2019;383:2997-3000.
20. Jiang C, Xiong W, Li C, Niu C, Wang F. Uniaxial strain induced symmetry lowering and valleys drift in MoS2. New J Phys 2021;23:053007.
21. Kong D, Xin T, Sun S, et al. Surface energy driven liquid-drop-like pseudoelastic behaviors and in situ atomistic mechanisms of small-sized face-centered-cubic metals. Nano Lett 2019;19:292-8.
22. Zhang J, Tomitori M, Arai T, Oshima Y. Surface effect on Young’s modulus of sub-two-nanometer gold [111] nanocontacts. Phys Rev Lett 2022;128:146101.
23. Diao J, Gall K, Dunn ML. Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2003;2:656-60.
24. Tosatti E, Prestipino S, Kostlmeier S, Dal Corso A, Di Tolla FD. String tension and stability of magic tip-suspended nanowires. Science 2001;291:288-90.
25. Calvo MR, Sabater C, Dednam W, Lombardi EB, Caturla MJ, Untiedt C. Influence of relativistic effects on the contact formation of transition metals. Phys Rev Lett 2018;120:076802.
26. Wang Y, Li M, Xu J. Mechanical properties of spinodal decomposed metallic glass composites. Scr Mater 2017;135:41-5.
27. Tavazza F, Smith DT, Levine LE, Pratt JR, Chaka AM. Electron transport in gold nanowires: stable 1-, 2- and 3-dimensional atomic structures and noninteger conduction states. Phys Rev Lett 2011;107:126802.
30. Fujii A, Tsutsui M, Kurokawa S, Sakai A. Break conductance of noble metal contacts. Phys Rev B 2005;72:045407.
31. Ternes M, González C, Lutz CP, et al. Interplay of conductance, force, and structural change in metallic point contacts. Phys Rev Lett 2011;106:016802.
32. Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ. The force needed to move an atom on a surface. Science 2008;319:1066-9.
33. Xu F, Qin Q, Mishra A, Gu Y, Zhu Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res 2010;3:271-80.
34. Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 2005;4:525-9.
35. Hoffmann S, Utke I, Moser B, et al. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett 2006;6:622-5.
36. Comtet J, Lainé A, Niguès A, Bocquet L, Siria A. Atomic rheology of gold nanojunctions. Nature 2019;569:393-7.
37. Canale L, Comtet J, Niguès A, et al. Nanorheology of interfacial water during ice gliding. Phys Rev X 2019;9:041025.
38. Khosravi A, Lainé A, Vanossi A, Wang J, Siria A, Tosatti E. Understanding the rheology of nanocontacts. Nat Commun 2022;13:2428.
39. Shiota T, Mares AI, Valkering AMC, Oosterkamp TH, van Ruitenbeek JM. Mechanical properties of Pt monatomic chains. Phys Rev B 2008;77:125411.
40. Oshima Y, Kurui Y. In situ TEM observation of controlled gold contact failure under electric bias. Phys Rev B 2013;87:081404.
41. Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science 2000;289:606-8.
42. Wang L, Liu P, Guan P, et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 2013;4:2413.
43. Zhang H, Tersoff J, Xu S, et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv 2016;2:e1501382.
44. Nie A, Bu Y, Li P, et al. Approaching diamond’s theoretical elasticity and strength limits. Nat Commun 2019;10:5533.
45. Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett 2011;11:3816-20.
46. He Y, She D, Liu Z, et al. Atomistic observation on diffusion-mediated friction between single-asperity contacts. Nat Mater 2022;21:173-80.
47. Dang C, Chou JP, Dai B, et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 2021;371:76-8.
48. Liu P, Wei X, Song S, et al. Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater 2019;165:99-108.
49. Guo H, Chen K, Oh Y, et al. Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires. Nano Lett 2011;11:3207-13.
50. Chen Y, Liao X. Chapter Four - Mechanical behaviors of semiconductor nanowires. Semicond Semimet 2016;94:109-58.
51. Lu Y, Song J, Huang JY, Lou J. Fracture of sub-20 nm ultrathin gold nanowires. Adv Funct Mater 2011;21:3982-9.
52. Sun S, Kong D, Li D, et al. Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires. ACS Nano 2019;13:8708-16.
53. Wang X, Liu Z, He Y, Tan S, Wang G, Mao SX. Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy. Nat Nanotechnol 2022;17:737-45.
54. Cheng G, Miao C, Qin Q, et al. Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nat Nanotechnol 2015;10:687-91.
55. Moresco F. Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys Rep 2004;399:175-225.
56. Svensson K, Jompol Y, Olin H, Olsson E. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev Sci Instrum 2003;74:4945-7.
57. Kawamoto N, Kakefuda Y, Yamada I, et al. Visualizing nanoscale heat pathways. Nano Energy 2018;52:323-8.
58. Oshima Y, Mouri K, Hirayama H, Takayanagi K. Development of a miniature STM holder for study of electronic conductance of metal nanowires in UHV-TEM. Surf Sci 2003;531:209-16.
59. Oshima Y, Koizumi H, Mouri K, Hirayama H, Takayanagi K, Kondo Y. Evidence of a single-wall platinum nanotube. Phys Rev B 2002;65:121401.
60. Xu M, Dai S, Blum T, Li L, Pan X. Double-tilt in situ TEM holder with ultra-high stability. Ultramicroscopy 2018;192:1-6.
61. Gibson CT, Weeks BL, Abell C, Rayment T, Myhra S. Calibration of AFM cantilever spring constants. Ultramicroscopy 2003;97:113-8.
62. Nafari A, Karlen D, Rusu C, Svensson K, Olin H, Enoksson P. MEMS sensor for in situ TEM atomic force microscopy. J Microelectromech Syst 2008;17:328-33.
63. Giessibl FJ, Pielmeier F, Eguchi T, An T, Hasegawa Y. Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys Rev B 2011;84:125409.
64. An T, Eguchi T, Akiyama K, Hasegawa Y. Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator. Appl Phys Lett 2005;87:133114.
66. Zhang J, Ishizuka K, Tomitori M, Arai T, Oshima Y. Atomic scale mechanics explored by in situ transmission electron microscopy with a quartz length-extension resonator as a force sensor. Nanotechnology 2020;31:205706.
67. Wang L, Guan P, Teng J, et al. New twinning route in face-centered cubic nanocrystalline metals. Nat Commun 2017;8:2142.
68. Wang L, Teng J, Sha X, Zou J, Zhang Z, Han X. Plastic deformation through dislocation saturation in ultrasmall Pt nanocrystals and its in situ atomistic mechanisms. Nano Lett 2017;17:4733-9.
69. Mompiou F, Legros M. Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films. Scr Mater 2015;99:5-8.
70. Xie L, Oshima Y. Nonlinear mechanical response of rippled MoS2 nanosheets evaluated by in situ transmission electron microscopy. Appl Surf Sci 2022;597:153708.
71. Zhu Y, Espinosa HD. An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA 2005;102:14503-8.
72. Sato T, Ishida T, Jalabert L, Fujita H. Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 2012;23:505701.
73. Sato T, Milne ZB, Nomura M, Sasaki N, Carpick RW, Fujita H. Ultrahigh strength and shear-assisted separation of sliding nanocontacts studied in situ. Nat Commun 2022;13:2551.
74. Zhang J, Li Y, Li X, et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten. Nat Commun 2021;12:2218.
75. Nie A, Bu Y, Huang J, et al. Direct observation of room-temperature dislocation plasticity in diamond. Matter 2020;2:1222-32.
77. Zhu Y, Qin Q, Xu F, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B 2012;85:045443.
78. Feng G, Nix WD, Yoon Y, Lee CJ. A study of the mechanical properties of nanowires using nanoindentation. J Appl Phys 2006;99:074304.
79. Dai S, Zhao J, He MR, et al. Elastic properties of GaN nanowires: revealing the influence of planar defects on young’s modulus at nanoscale. Nano Lett 2015;15:8-15.
80. Chen Y, Burgess T, An X, et al. Effect of a high density of stacking faults on the Young’s modulus of GaAs nanowires. Nano Lett 2016;16:1911-6.
81. Wang YB, Wang LF, Joyce HJ, et al. Super deformability and Young’s modulus of GaAs nanowires. Adv Mater 2011;23:1356-60.
82. Liu C, Hongo K, Maezono R, Zhang J, Oshima Y. Stiffer bonding of armchair edge in single-layer molybdenum disulfide nanoribbons. Adv Sci 2023;10:e2303477.
84. Cuenot S, Frétigny C, Demoustier-champagne S, Nysten B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 2004;69:165410.
85. Zhang J, Ishizuka K, Tomitori M, et al. Peculiar atomic bond nature in platinum monatomic chains. Nano Lett 2021;21:3922-8.
86. Li D, Wang Z, Zhao Y, et al. In situ atomic-scale quantitative evidence of plastic activities resulting in reparable deformation in ultrasmall-sized Ag nanocrystals. ACS Nano 2023;17:23488-97.
87. Östlund F, Rzepiejewska-Malyska K, Leifer K, et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater 2009;19:2439-44.
88. Wang L, Zheng K, Zhang Z, Han X. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett 2011;11:2382-5.
89. Zheng X, Han W, Yang K, et al. Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy. Sci Adv 2022;8:eabo0773.
90. Seo JH, Park HS, Yoo Y, et al. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett 2013;13:5112-6.
91. Chu S, Liu P, Zhang Y, et al. In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nat Commun 2022;13:4151.
92. Wang J, Sansoz F, Huang J, et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun 2013;4:1742.
93. Zhu Q, Huang Q, Guang C, et al. Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat Commun 2020;11:3100.
94. Yang C, Zhang B, Fu L, et al. Chemical inhomogeneity-induced profuse nanotwinning and phase transformation in AuCu nanowires. Nat Commun 2023;14:5705.
95. Fu L, Yang C, Lu Y, et al. In situ atomistic mechanisms of detwinning in nanocrystalline AuAg alloy. Sci China Mater 2022;65:820-6.
96. Chen B, Gao Q, Wang Y, et al. Anelastic behavior in GaAs semiconductor nanowires. Nano Lett 2013;13:3169-72.
98. Sun J, He L, Lo YC, et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater 2014;13:1007-12.
99. Wang J, Zeng Z, Weinberger CR, Zhang Z, Zhu T, Mao SX. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat Mater 2015;14:594-600.
100. Li L, Chen G, Zheng H, et al. Room-temperature oxygen vacancy migration induced reversible phase transformation during the anelastic deformation in CuO. Nat Commun 2021;12:3863.
101. Huang L, Zheng F, Deng Q, et al. In situ scanning transmission electron microscopy observations of fracture at the atomic scale. Phys Rev Lett 2020;125:246102.
102. Ly TH, Zhao J, Cichocka MO, Li LJ, Lee YH. Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nat Commun 2017;8:14116.
103. Wang S, Qin Z, Jung GS, et al. Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects. ACS Nano 2016;10:9831-9.
104. López-Polín G, Gómez-Herrero J, Gómez-Navarro C. Confining crack propagation in defective graphene. Nano Lett 2015;15:2050-4.
106. Wang Q, Liu K, Xue X, et al. Negative differential friction predicted in two-dimensional electride commensurate contacts: role of the electronic structure. Phys Rev B 2024;109:085420.
107. Sun J, Zhang L, Pang R, et al. Negative differential friction predicted in 2D ferroelectric In2Se3 commensurate contacts. Adv Sci 2022;9:e2103443.
108. Cheng J, Liu K, Zhao X, et al. Negative-positive oscillation in interfacial friction of a In2Se3-graphene heterojunction. Phys Rev B 2022;106:195416.
109. Liu K, Cheng J, Zhao X, et al. Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition. Nano Res 2022;15:5758-66.
110. Chen C, Xue P, Fan X, Wang C, Diao D. Friction-induced rapid restructuring of graphene nanocrystallite cap layer at sliding surfaces: short run-in period. Carbon 2018;130:215-21.
112. Bylinskii A, Gangloff D, Counts I, Vuletić V. Observation of Aubry-type transition in finite atom chains via friction. Nat Mater 2016;15:717-21.
113. Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017;5:263-84.
114. Lu H, Wang Z, Yun D, Li J, Shan Z. A new approach of using Lorentz force to study single-asperity friction inside TEM. J Mater Sci Technol 2021;84:43-8.
115. Hu Z, Fan X, Diao D. Facilitation of sp2 nanocrystallites on the formation of transfer films for stable low friction with in-situ TEM nanofriction study. Tribol Int 2022;174:107713.
116. Tang DM, Kvashnin DG, Najmaei S, et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat Commun 2014;5:3631.
117. Chen Y, Gao Q, Wang Y, et al. Determination of Young’s modulus of ultrathin nanomaterials. Nano Lett 2015;15:5279-83.
118. Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ. Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 2006;96:075505.
119. Wang X, Zheng S, Shinzato S, et al. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat Commun 2021;12:5237.
120. Yin S, Cheng G, Richter G, Gao H, Zhu Y. Transition of deformation mechanisms in single-crystalline metallic nanowires. ACS Nano 2019;13:9082-90.
121. López-polín G, Gómez-navarro C, Parente V, et al. Increasing the elastic modulus of graphene by controlled defect creation. Nature Phys 2015;11:26-31.
122. Lu Y, Chen Y, Zeng Y, et al. Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal. Nat Commun 2023;14:5540.
123. Cheng G, Chang TH, Qin Q, Huang H, Zhu Y. Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett 2014;14:754-8.
124. Oshima Y, Kurui Y, Takayanagi K. Controlling quantized steps in conductance of gold Zigzag nanowires. Appl Phys Express 2011;4:055002.
125. Wang Q, Liu R, Xiang D, et al. Single-atom switches and single-atom gaps using stretched metal nanowires. ACS Nano 2016;10:9695-702.
126. Qin Q, Yin S, Cheng G, et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun 2015;6:5983.
127. Yue Y, Liu P, Deng Q, Ma E, Zhang Z, Han X. Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett 2012;12:4045-9.
128. Wang L, Teng J, Wu Y, et al. Size dependence of dislocation activities and independence on theoretical elastic strain limit in Pt nanocrystals revealed by atomic-resolution in situ investigation. Mater Today Nano 2018;2:1-6.
129. Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022;375:1261-5.
130. Liu J, Zhang J, Arai T, Tomitori M, Oshima Y. Critical shear stress of gold nanocontacts estimated by in situ transmission electron microscopy equipped with a quartz length-extension resonator. Appl Phys Express 2021;14:075006.
131. Suzuki Y, Kizuka T. Structure control of tungsten nanocontacts through pulsed-voltage application. Appl Phys Express 2018;11:055202.
132. Zhong L, Wang J, Sheng H, Zhang Z, Mao SX. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014;512:177-80.
133. Tsuruoka Y, Obi T, Kizuka T. Reversible phase-transition control in nanometer-sized zirconium wires via pulse-voltage impression. Nano Express 2020;1:010050.
134. Obi T, Ochiai Y, Tsuruoka Y, Kizuka T. Amorphization of pure noble metal nanocontacts by nanosecond electrical energization. J Phys Chem Solids 2022;162:110498.
135. Li X, Zhu Q, Hong Y, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force. Nat Commun 2022;13:6503.
136. Li X, Turner J, Bustillo K, Minor AM. In situ transmission electron microscopy investigation of electroplasticity in single crystal nickel. Acta Mater 2022;223:117461.
137. Gao L, Cao K, Hu X, et al. Nano electromechanical approach for flexible piezoresistive sensor. Appl Mater Today 2020;18:100475.
138. Tinoco M, Maduro L, Masaki M, Okunishi E, Conesa-Boj S. Strain-dependent edge structures in MoS2 layers. Nano Lett 2017;17:7021-6.