REFERENCES

1. Van der Ven A, Deng Z, Banerjee S, Ong SP. Rechargeable alkali-ion battery materials: theory and computation. Chem Rev 2020;120:6977-7019.

2. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7:19-29.

3. Zhu X, Lin T, Manning E, et al. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries. J Nanopart Res 2018;20:160.

4. Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 2012;11:512-7.

5. Yaroshevsky AA. Abundances of chemical elements in the Earth’s crust. Geochem Int 2006;44:48-55.

6. USG Survey. Mineral commodity summaries. Available from: https://pubs.usgs.gov/publication/mcs2023 [Last accessed on 11 May 2024].

7. Rudola A, Wright CJ, Barker J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: a materials chemistry perspective. Energy Mater Adv 2021;2021:2021/9798460.

8. Zhu X, Wang L. Advances in materials for all-climate sodium-ion batteries. EcoMat 2020;2:e12043.

9. Liu Z, Jiang K, Chu S, et al. Integrating P2 into O′3 toward a robust Mn-based layered cathode for sodium-ion batteries. J Mater Chem A 2020;8:23820-6.

10. Zhu X, Mochiku T, Fujii H, et al. A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries. Nano Res 2018;11:6197-205.

11. Liang X, Hwang J, Sun Y. Practical cathodes for sodium-ion batteries: who will take the crown? Adv Energy Mater 2023;13:2301975.

12. Delmas C, Carlier D, Guignard M. The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach. Adv Energy Mater 2021;11:2001201.

13. Peng B, Wan G, Ahmad N, Yu L, Ma X, Zhang G. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv Energy Mater 2023;13:2300334.

14. Zhang Y, Zhang R, Huang Y. Air-stable NaxTMO2 cathodes for sodium storage. Front Chem 2019;7:335.

15. Wang X, Zhang Q, Zhao C, et al. Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat Energy 2024;9:184-96.

16. Johnston W, Heikes R, Sestrich D. The preparation, crystallography, and magnetic properties of the LixCo1-xO system. J Phys Chem Solids 1958;7:1-13.

17. Mizushima K, Jones P, Wiseman P, Goodenough J. LixCoO2 (0< x< -1): a new cathode material for batteries of high energy density. Mater Res Bull 1980;15:783-9.

18. Fouassier C, Matejka G, Reau J, Hagenmuller P. Sur de nouveaux bronzes oxygénés de formule NaχCoO2(χ1). Le système cobalt-oxygène-sodium. J Solid State Chem 1973;6:532-7.

19. Delmas C, Braconnier J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 1981;3-4:165-9.

20. Braconnier J, Delmas C, Hagenmuller P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Mater Res Bull 1982;17:993-1000.

21. Maazaz A, Delmas C, Hagenmuller P. A study of the NaxTiO2 system by electrochemical deintercalation. J Incl Phenom 1983;1:45-51.

22. Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Physica B+C 1980;99:81-5.

23. Katcho NA, Carrasco J, Saurel D, et al. Origins of bistability and na ion mobility difference in P2- and O3-Na2/3Fe2/3Mn1/3O2 cathode polymorphs. Adv Energy Mater 2017;7:1601477.

24. Zhao C, Wang Q, Yao Z, et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020;370:708-11.

25. Kim D, Kang S, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 2011;1:333-6.

26. Cheng Z, Zhao B, Guo Y, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater 2022;12:2103461.

27. Lee DH, Xu J, Meng YS. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 2013;15:3304-12.

28. Jung YH, Christiansen AS, Johnsen RE, Norby P, Kim DK. In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation. Adv Funct Mater 2015;25:3227-37.

29. Sathiya M, Jacquet Q, Doublet M, Karakulina OM, Hadermann J, Tarascon J. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv Energy Mater 2018;8:1702599.

30. Ong SP, Chevrier VL, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 2011;4:3680.

31. Liu Z, Xu X, Ji S, Zeng L, Zhang D, Liu J. Recent progress of P2-type layered transition-metal oxide cathodes for sodium-ion batteries. Chemistry 2020;26:7747-66.

32. Paidi AK, Park WB, Ramakrishnan P, et al. Unravelling the nature of the intrinsic complex structure of binary-phase Na-layered oxides. Adv Mater 2022;34:e2202137.

33. Jung R, Morasch R, Karayaylali P, et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-Ion batteries. J Electrochem Soc 2018;165:A132-41.

34. You Y, Dolocan A, Li W, Manthiram A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-Ion batteries. Nano Lett 2019;19:182-8.

35. Zheng L, Li L, Shunmugasundaram R, Obrovac MN. Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:38246-54.

36. Sun Y, Wang H, Meng D, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration. ACS Appl Energy Mater 2021;4:2061-7.

37. Zuo W, Qiu J, Liu X, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun 2020;11:3544.

38. Mu L, Hou Q, Yang Z, et al. Water-processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 cathode material for sodium ion batteries. J Electrochem Soc 2019;166:A251-7.

39. Han MH, Gonzalo E, Sharma N, et al. High-performance P2-phase Na2/3Mn0.8Fe0.1Ti 0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chem Mater 2016;28:106-16.

40. Deng Y, Wu Z, Liang R, et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv Funct Mater 2019;29:1808522.

41. Song T, Kendrick E. Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries. J Phys Mater 2021;4:032004.

42. Hwang J, Kim J, Yu T, Sun Y. A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries. Adv Energy Mater 2019;9:1803346.

43. Lu Z, Dahn JR. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J Electrochem Soc 2001;148:A1225.

44. Yang L, Li X, Liu J, et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J Am Chem Soc 2019;141:6680-9.

45. Singh G, Tapia-ruiz N, Lopez del Amo JM, et al. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x = 0.05, 0.1) Na-Ion cathodes with enhanced stability and rate capability. Chem Mater 2016;28:5087-94.

46. Yuan D, Hu X, Qian J, et al. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim Acta 2014;116:300-5.

47. Jiang M, Qian G, Liao X, et al. Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling. J Energy Chem 2022;69:16-25.

48. Martens I, Vostrov N, Mirolo M, et al. Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel. Nat Commun 2023;14:6975.

49. Martens I, Vostrov N, Mirolo M, et al. Revisiting phase transformation mechanisms in LiNi0.5Mn1.5O4 high voltage cathodes with operando microdiffraction. ACS Mater Lett 2022;4:2528-36.

50. Asl HY, Manthiram A. Reining in dissolved transition-metal ions. Science 2020;369:140-1.

51. Zhu X, Sun D, Luo B, Hu Y, Wang L. A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device. Electrochim Acta 2018;284:30-7.

52. Lu Z, Dahn JR. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2. Chem Mater 2001;13:1252-7.

53. Duffort V, Talaie E, Black R, Nazar LF. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chem Mater 2015;27:2515-24.

54. Tang J, Kye DK, Pol VG. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries. J Power Sources 2018;396:476-82.

55. Xiao B, Soto FA, Gu M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv Energy Mater 2018;8:1801441.

56. Zhang B, Dugas R, Rousse G, Rozier P, Abakumov AM, Tarascon JM. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat Commun 2016;7:10308.

57. Park K, Yu B, Goodenough JB. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery. Chem Mater 2015;27:6682-8.

58. Jo C, Choi JU, Yashiro H, Myung S. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries. J Mater Chem A 2019;7:3903-9.

59. Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon J. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes. Chem Mater 2017;29:5948-56.

60. Singh G, Acebedo B, Cabanas MC, Shanmukaraj D, Armand M, Rojo T. An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2. Electrochem Commun 2013;37:61-3.

61. Shen B, Zhan R, Dai C, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells. J Colloid Interface Sci 2019;553:524-9.

62. Martinez De Ilarduya J, Otaegui L, López del Amo JM, Armand M, Singh G. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery. J Power Sources 2017;337:197-203.

63. Niu Y, Guo Y, Yin Y, et al. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv Mater 2020;32:2001419.

64. Shacklette LW, Jow TR, Townsend L. Rechargeable electrodes from sodium cobalt bronzes. J Electrochem Soc 1988;135:2669-74.

65. Mendiboure A, Delmas C, Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J Solid State Chem 1985;57:323-31.

66. Hamani D, Ati M, Tarascon J, Rozier P. NaxVO2 as possible electrode for Na-ion batteries. Electrochem Commun 2011;13:938-41.

67. Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat Mater 2011;10:74-80.

68. Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 2002;12:1142-7.

69. Wang Y, Shadike Z, Fitzhugh W, et al. Tuning discharge voltage by Schottky electron barrier in P2-Na2/3Mg0.205Ni0.1Fe0.05Mn0.645O2. Energy Stor Mater 2023;55:587-96.

70. Voronina N, Köster K, Yu JH, et al. Unveiling the role of ruthenium in layered sodium cobaltite toward high-performance electrode enabled by anionic and cationic redox. Adv Energy Mater 2023;13:2302017.

71. She Q, Xu J, Huang A, et al. Limiting cobalt fraction in lithium rich cathode materials for stable and fast activation. Chem Eng Sci 2024;284:119526.

72. Zhang J, Wang W, Wang W, Wang S, Li B. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl Mater Interfaces 2019;11:22051-66.

73. Lu Z, Donaberger RA, Dahn JR. Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and O3 Structures. Chem Mater 2000;12:3583-90.

74. Zhang Y, Wu M, Ma J, et al. Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: oxygen redox chemistry and oxygen release suppression. ACS Cent Sci 2020;6:232-40.

75. Liu L, Li X, Bo S, et al. High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Adv Energy Mater 2015;5:1500944.

76. Li Z, Gao R, Sun L, Hu Z, Liu X. Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries. J Mater Chem A 2015;3:16272-8.

77. Liu Z, Shen J, Feng S, et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na. Angew Chem Int Ed 2021;60:20960-9.

78. Wang PF, Yao HR, Liu XY, et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv 2018;4:eaar6018.

79. Tang K, Huang Y, Xie X, et al. Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries. Chem Eng J 2020;399:125725.

80. Wang Y, Wang Y, Xing Y, et al. Entropy modulation strategy of P2-type layered transition metal oxide cathodes for sodium-ion batteries with a high performance. J Mater Chem A 2023;11:19955-64.

81. Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun 2014;50:3677-80.

82. Zou P, Yao L, Wang C, Lee SJ, Li T, Xin HL. Regulating cation interactions for zero-strain and high-voltage P2-type Na2/3Li1/6Co1/6Mn2/3O2 layered oxide cathodes of sodium-ion batteries. Angew Chem Int Ed 2023;62:e202304628.

83. Liu Z, Wu J, Zeng J, et al. Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Adv Energy Mater 2023;13:2301471.

84. Dreyer SL, Zhang R, Wang J, et al. The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries. J Phys Energy 2023;5:035002.

85. Wang J, Dreyer SL, Wang K, et al. P2-type layered high-entropy oxides as sodium-ion cathode materials. Mater Futures 2022;1:035104.

86. Kubota K, Asari T, Komaba S. Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni-Mn and Na-vacancy ordering and electrochemical properties. Adv Mater 2023;35:e2300714.

87. Li Y, Chen M, Liu B, Zhang Y, Liang X, Xia X. Heteroatom doping: an effective way to boost sodium ion storage. Adv Energy Mater 2020;10:2000927.

88. Zhang L, Wang C, Liu Y, et al. Suppressing interlayer-gliding and Jahn-teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries. Chem Eng J 2021;426:130813.

89. Wang C, Liu L, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun 2021;12:2256.

90. Ma C, Alvarado J, Xu J, et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J Am Chem Soc 2017;139:4835-45.

91. Shen Q, Liu Y, Zhao X, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv Funct Mater 2021;31:2106923.

92. Fu H, Wang YP, Fan G, et al. Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chem Sci 2022;13:726-36.

93. Li C, Geng F, Hu B, Hu B. Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies. Mater Today Energy 2020;17:100474.

94. Huang Z, Gu Z, Heng Y, Huixiang Ang E, Geng H, Wu X. Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chem Eng J 2023;452:139438.

95. Wang X, Yin L, Ronne A, et al. Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state. Nat Commun 2023;14:7665.

96. Wang T, Ren GX, Xia HY, et al. Anionic redox regulated via metal-ligand combinations in layered sulfides. Adv Mater 2022;34:e2107353.

97. Cai C, Li X, Hu P, et al. Comprehensively strengthened metal-oxygen bonds for reversible anionic redox reaction. Adv Funct Mater 2023;33:2215155.

98. Liu K, Tan S, Moon J, et al. Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries. Adv Energy Mater 2020;10:2000135.

99. Wang X, Dong X, Feng X, et al. In-plane BO3 configuration in P2 layered oxide enables outstanding long cycle performance for sodium ion batteries. Small Methods 2023;7:e2201201.

100. Chae MS, Kim HJ, Lyoo J, et al. Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries. Adv Energy Mater 2020;10:2002205.

101. Mao Q, Yu Y, Wang J, et al. Mitigating the P2-O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction. J Mater Chem A 2021;9:10803-11.

102. Cui X, Wang S, Ye X, et al. Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Stor Mater 2022;45:1153-64.

103. Ma S, Zou P, Xin HL. Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater Today Energy 2023;38:101446.

104. Lee E, Lu J, Ren Y, et al. Layered P2/O3 intergrowth cathode: toward high power Na-ion batteries. Adv Energy Mater 2014;4:1400458.

105. Guo S, Liu P, Yu H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew Chem Int Ed 2015;54:5894-9.

106. Huang Q, Wang M, Zhang L, et al. Shear-resistant interface of layered oxide cathodes for sodium ion batteries. Energy Stor Mater 2022;45:389-98.

107. Li Z, Zhang J, Gao R, et al. Li-substituted co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2-xLixO2 as high-rate-capability cathode materials for sodium ion batteries. J Phys Chem C 2016;120:9007-16.

108. Zhou D, Huang W, Lv X, Zhao F. A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries. J Power Sources 2019;421:147-55.

109. Yu L, Cheng Z, Xu K, et al. Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode. Energy Stor Mater 2022;50:730-9.

110. Chen C, Huang W, Li Y, et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 2021;90:106504.

111. Liang X, Sun Y. A novel pentanary metal oxide cathode with P2/O3 biphasic structure for high-performance sodium-ion batteries. Adv Funct Mater 2022;32:2206154.

112. Zhou P, Che Z, Liu J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Stor Mater 2023;57:618-27.

113. Mu J, Cai T, Dong W, Zhou C, Han Z, Huang F. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem Eng J 2023;471:144403.

114. Gao X, Liu H, Chen H, et al. Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Sci Bull 2022;67:1589-602.

115. Lin C, Dai P, Wang X, et al. P2/O3 biphase integration promoting the enhancement of structural stability for sodium layered oxide cathode. Chem Eng J 2024;480:147964.

116. Zhu YF, Xiao Y, Hua WB, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew Chem Int Ed 2020;59:9299-304.

117. Wu ZG, Li JT, Zhong YJ, et al. Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium ion batteries. ACS Appl Mater Interfaces 2017;9:21267-75.

118. Xiao Y, Wang P, Yin Y, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode. Adv Energy Mater 2018;8:1800492.

119. Huang Q, Feng Y, Xu S, et al. A P2@tunnel heterostructure cathode for high-performance sodium-ion batteries. ChemElectroChem 2020;7:4383-9.

120. Xiao Y, Liu Y, Li H, et al. Insights into layered-tunnel dynamic structural evolution based on local coordination chemistry regulation for high-energy-density and long-cycle-life sodium-ion oxide cathodes. InfoMat 2023;5:e12475.

121. Gao G, Tie D, Ma H, et al. Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2(0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. J Mater Chem A 2018;6:6675-84.

122. Feng J, Yang Z, Zhong J, Zheng C, Wei Z, Li J. Integrating superlattice to regulate P2-O2 phase transition and improve cycling stability in sodium-ion batteries. Batteries Supercaps 2022;5:e202200115.

123. Vanam SP, Barpanda P. A molybdenum doped layer-spinel composite cathode material for sodium-ion battery. Electrochim Acta 2022;431:141122.

124. Li R, Gao J, Li J, et al. An undoped tri-phase coexistent cathode material for sodium-ion batteries. Adv Funct Mater 2022;32:2205661.

125. Tong Z, Ye Q, Deng Y, et al. Tuning the structural disordering in hierarchical LiNi0.5Mn1.5O4 microrods for stable high-rate electrode performance. J Alloy Compd 2023;937:168544.

126. Jung E, Park Y, Park K, et al. Synthesis of nanostructured P2-Na2/3MnO2 for high performance sodium-ion batteries. Chem Commun 2019;55:4757-60.

127. Shen Q, Zhao X, Liu Y, et al. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode. Adv Sci 2020;7:2002199.

128. Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y. LiNi0.5Mn1.5O4 nanostructures with two-phase intergrowth as enhanced cathodes for lithium-ion batteries. Electrochim Acta 2014;121:253-7.

129. Liu Y, Shen Q, Zhao X, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes. Adv Funct Mater 2020;30:1907837.

130. Peng B, Sun Z, Zhao L, Li J, Zhang G. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V. Energy Stor Mater 2021;35:620-9.

131. Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y. Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries. J Power Sources 2014;261:93-100.

132. Zhu X, Luo B, Butburee T, Zhu J, Han S, Wang L. Hierarchical macro/mesoporous NiO as stable and fast-charging anode materials for lithium-ion batteries. Micropor Mesopor Mat 2017;238:78-83.

133. Xie M, Li D, He X, et al. Nitrogen-doped meso-macroporous carbon from waste asphalt as high-performance anode materials for alkali-ion batteries. Sustain Mater Techno 2023;35:e00535.

134. Chen C, Han Z, Chen S, et al. Core-shell layered oxide cathode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 2020;12:7144-52.

135. Bao S, Luo S, Wang Z, Yan S, Wang Q, Li J. Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J Power Sources 2018;396:404-11.

136. Hou P, Dong M, Sun Z, Li F. Compositionally graded high-voltage P2-type cathode with superior structural stability and redox kinetics for advanced Na-ion batteries. Nano Res 2024;17:2755-62.

137. Wang D, Deng Y, Liu Y, et al. Sodium-ion batteries towards practical application through gradient Mn-based layer-tunnel cathode. Nano Energy 2023;110:108340.

138. Fu H, Li J, Wang L, Yang X, Li X, Lü W. Na-rich layered transition metal oxides with core/shell structures for improved performance of sodium-ion batteries. J Phys Chem C 2022;126:20196-203.

139. Pamidi V, Trivedi S, Behara S, Fichtner M, Reddy MA. Micron-sized single-crystal cathodes for sodium-ion batteries. iScience 2022;25:104205.

140. Zhang F, Lu Y, Guo Y, et al. Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries. Chem Eng J 2023;458:141515.

141. Fu F, Liu X, Fu X, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat Commun 2022;13:2826.

142. Zhu X, She Q, Wang M, et al. Synchronous densification and conductivity modulation of nano-titanate for pseudocapacitive Li-ion storage. Adv Funct Mater 2024;34:2311025.

143. Zuo W, Liu X, Qiu J, et al. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nat Commun 2021;12:4903.

144. Zhu X, Schulli T, Wang L. Stabilizing high-voltage cathode materials for next-generation Li-ion batteries. Chem Res Chin Univ 2020;36:24-32.

145. Wang K, Zhang Z, Ding Y, et al. Surface facet dependent cycling stability of layered cathodes. Adv Funct Mater 2023;33:2302023.

146. Shi C, Wang L, Chen X, et al. Challenges of layer-structured cathodes for sodium-ion batteries. Nanoscale Horiz 2022;7:338-51.

147. Liu Y, Fang X, Zhang A, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016;27:27-34.

148. Shi Y, Li S, Gao A, et al. Probing the structural transition kinetics and charge compensation of the P2-Na0.78Al0.05Ni0.33Mn0.60O2 cathode for sodium ion batteries. ACS Appl Mater Interfaces 2019;11:24122-31.

149. Ren H, Zheng L, Li Y, et al. Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries. Nano Energy 2022;103:107765.

150. Wan G, Peng B, Zhao L, et al. Dual-strategy modification on P2-Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries. SusMat 2023;3:58-71.

151. Xia X, Liu T, Cheng C, et al. Suppressing the dynamic oxygen evolution of sodium layered cathodes through synergistic surface dielectric polarization and bulk site-selective co-doping. Adv Mater 2023;35:e2209556.

152. Zhu X, Schülli TU, Yang X, et al. Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat Commun 2022;13:1565.

153. Meng X, Yang XQ, Sun X. Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv Mater 2012;24:3589-615.

154. Tiwari VK, Singh RK. Nanostructured coating strategies of cathode for improved sodium ion battery performance. Chem Eng J 2023;471:144592.

155. Alvarado J, Ma C, Wang S, Nguyen K, Kodur M, Meng YS. Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl Mater Interfaces 2017;9:26518-30.

156. Ji H, Zhai J, Chen G, et al. Surface engineering suppresses the failure of biphasic sodium layered cathode for high performance sodium-ion batteries. Adv Funct Mater 2022;32:2109319.

157. Zuo W, Qiu J, Liu X, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Stor Mater 2020;26:503-12.

158. Kaliyappan K, Or T, Deng Y, Hu Y, Bai Z, Chen Z. Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone. Adv Funct Mater 2020;30:1910251.

159. Xia J, Wu W, Fang K, Wu X. Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement. Carbon 2020;157:693-702.

160. Liu Y, Yang J, Guo B, et al. Enhanced electrochemical performance of Na0.5Ni0.25Mn0.75O2 micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF3 coating. Nanoscale 2018;10:12625-30.

161. Zhang Y, Pei Y, Liu W, et al. AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem Eng J 2020;382:122697.

162. Jiao J, Wu K, Dang R, et al. A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation. Electrochim Acta 2021;384:138362.

163. Shao Y, Wang X, Li B, et al. Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries. Electrochim Acta 2023;442:141915.

164. Li H, Wang T, Wang X, et al. Sodium superionic conductor NaTi2(PO4)3 surface layer modified P2-type Na2/3Ni1/3Mn2/3O2 as high-performance cathode for sodium-ion batteries. J Power Sources 2021;494:229771.

165. Deng Q, Zheng F, Zhong W, et al. Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries. Chem Eng J 2021;404:126446.

166. Lu D, Yao Z, Zhong Y, et al. Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries. ACS Appl Mater Interfaces 2019;11:15630-7.

167. Lin J, Huang Q, Dai K, et al. Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure. J Power Sources 2022;552:232235.

168. Niu YB, Yin YX, Guo YG. Nonaqueous sodium-ion full cells: status, strategies, and prospects. Small 2019;15:e1900233.

169. He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Stor Mater 2019;23:233-51.

170. Zou K, Deng W, Cai P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv Funct Mater 2021;31:2005581.

171. Zhao C, Yao Z, Wang Q, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J Am Chem Soc 2020;142:5742-50.

172. Charrad G, Harmel J, Berthelot R, Taberna P, Simon P, Rozier P. On the synthesis and potential benefit of Na-rich P-type layered oxides for high power Na-ion batteries. J Solid State Chem 2023;326:124190.

173. Jin T, Wang PF, Wang QC, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew Chem Int Ed 2020;59:14511-6.

174. Yang X, Wang S, Li H, et al. Boosting the ultrastable high-Na-content P2-type layered cathode materials with zero-strain cation storage via a lithium dual-site substitution approach. ACS Nano 2023;17:18616-28.

175. Kumar BS, Kumar R, Pradeep A, et al. Fundamental principles toward designing high Na-containing P2-structured “layered” Na-transition metal oxides as high-performance cathode materials for Na-ion batteries. Chem Mater 2022;34:10470-83.

176. Zhang R, Tang Z, Sun D, et al. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chem Commun 2021;57:4243-6.

177. Zhang Q, Gao X, Shi Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan. Energy Stor Mater 2021;39:54-9.

178. Wang H, Xiao Y, Sun C, Lai C, Ai X. A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. RSC Adv 2015;5:106519-22.

179. Dewar D, Glushenkov AM. Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field. Energy Environ Sci 2021;14:1380-401.

180. Hwang J, Myung S, Lee J, Abouimrane A, Belharouak I, Sun Y. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 2015;16:218-26.

181. Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon J. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes. Chem Mater 2017;29:5948-56.

182. Shanmukaraj D, Kretschmer K, Sahu T, et al. Highly efficient, cost effective, and safe sodiation agent for high-performance sodium-ion batteries. ChemSusChem 2018;11:3286-91.

183. Zhang Z, Zhang R, Rajagopalan R, et al. A high-capacity self-sacrificial additive based on electroactive sodiated carbonyl groups for sodium-ion batteries. Chem Commun 2022;58:8702-5.

184. Marelli E, Marino C, Bolli C, Villevieille C. How to overcome Na deficiency in full cell using P2-phase sodium cathode-a proof of concept study of Na-rhodizonate used as sodium reservoir. J Power Sources 2020;450:227617.

185. Jo JH, Choi JU, Park YJ, Zhu J, Yashiro H, Myung ST. New insight into ethylenediaminetetraacetic acid tetrasodium salt as a sacrificing sodium ion source for sodium-deficient cathode materials for full cells. ACS Appl Mater Interfaces 2019;11:5957-65.

186. Jo JH, Choi JU, Park YJ, Ko JK, Yashiro H, Myung S. A new pre-sodiation additive for sodium-ion batteries. Energy Stor Mater 2020;32:281-9.

187. Guo YJ, Niu YB, Wei Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery. ACS Appl Mater Interfaces 2021;13:2772-8.

188. Zhang T, Kong J, Shen C, et al. Converting residual alkali into sodium compensation additive for high-energy Na-ion batteries. ACS Energy Lett 2023;8:4753-61.

189. Liao J, Zhang F, Lu Y, et al. Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes. Chem Eng J 2022;437:135275.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/