REFERENCES

1. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-8.

2. Peng L, Zhang Z, Qiu C. Carbon nanotube digital electronics. Nat Electron 2019;2:499-505.

3. Saito R, Nugraha ART, Hasdeo EH, Hung NT, Izumida W. Electronic and optical properties of single wall carbon nanotubes. Top Curr Chem 2017;375:7.

4. Yi C, Chen X, Gou F, et al. Direct measurements of the mechanical strength of carbon nanotube - aluminum interfaces. Carbon 2017;125:93-102.

5. Zhou K, Xu N, Xie G. Thermal conductivity of carbon nanotube superlattices: comparative study with defective carbon nanotubes. Chin Phys B 2018;27:026501.

6. Wan H, Cao Y, Lo LW, Zhao J, Sepúlveda N, Wang C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020;14:10402-12.

7. Zang M. Band theory of single-walled carbon nanotubes. IEEE Trans Nanotechnol 2005;4:452-9.

8. Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016;354:99-102.

9. Srimani T, Ding J, Yu A, et al. Comprehensive study on high purity semiconducting carbon nanotube extraction. Adv Electron Mater 2022;8:2101377.

10. Dekker C. How we made the carbon nanotube transistor. Nat Electron 2018;1:518-518.

11. Clément P, Xu X, Stoppiello CT, et al. Direct synthesis of multiplexed metal-nanowire-based devices by using carbon nanotubes as vector templates. Angew Chem Int Ed 2019;58:9928-32.

12. Zhao C, Zhou X, Xie S, et al. DFT study of electronic structure and properties of N, Si and Pd-doped carbon nanotubes. Ceram Int 2018;44:21027-33.

13. Ajayan PM, lijima S. Capillarity-induced filling of carbon nanotubes. Nature 1993;361:333-4.

14. Giménez-López Mdel C, Moro F, La Torre A, et al. Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2011;2:407.

15. Haft M, Grönke M, Gellesch M, et al. Tailored nanoparticles and wires of Sn, Ge and Pb inside carbon nanotubes. Carbon 2016;101:352-60.

16. Talyzin AV, Anoshkin IV, Krasheninnikov AV, et al. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett 2011;11:4352-6.

17. Kharlamova MV, Kramberger C, Saito T, Pichler T. Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes. Fuller Nanotub Carbon Nanostruct 2020;28:20-6.

18. Vasylenko A, Marks S, Wynn JM, et al. Electronic structure control of sub-nanometer 1D SnTe via Nanostructuring within single-walled carbon nanotubes. ACS Nano 2018;12:6023-31.

19. Koizumi R, Hart AH, Brunetto G, et al. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon 2016;110:27-33.

20. Pan X, Bao X. The effects of confinement inside carbon nanotubes on catalysis. ACC Chem Res 2011;44:553-62.

21. Nieto-Ortega B, Villalva J, Vera-Hidalgo M, Ruiz-González L, Burzurí E, Pérez EM. Band-gap opening in metallic single-walled carbon nanotubes by encapsulation of an organic salt. Angew Chem Int Ed 2017;56:12240-4.

22. Ivanov VG, Kalashnyk N, Sloan J, Faulques E. Vibrational dynamics of extreme 2 × 2 and 3 × 3 potassium iodide nanowires encapsulated in single-walled carbon nanotubes. Phys Rev B 2018;98:125429.

23. Chiu PW, Gu G, Kim GT, et al. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl Phys Lett 2001;79:3845-7.

24. Chimowa G, Yang L, Lonchambon P, et al. Tailoring of double-walled carbon nanotubes for formaldehyde sensing through encapsulation of selected materials. Phys Status Solidi A 2019;216:1900279.

25. Kato T, Hatakeyama R, Shishido J, Oohara W, Tohji K. P-N junction with donor and acceptor encapsulated single-walled carbon nanotubes. Appl Phys Lett 2009;95:083109.

26. Li Y, Kaneko T, Miyanaga S, Hatakeyama R. Synthesis and property characterization of c(69)n azafullerene encapsulated single-walled carbon nanotubes. ACS Nano 2010;4:3522-6.

27. Poudel YR, Li W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater Today Phys 2018;7:7-34.

28. Eliseev AA, Kharlamova MV, Chernysheva MV, et al. Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russ Chem Rev 2009;78:833-54.

29. Yang Q, Hou P, Bai S, Wang M, Cheng H. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem Phys Lett 2001;345:18-24.

30. Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998;391:59-62.

31. Dujardin E, Ebbesen TW, Hiura H, Tanigaki K. Capillarity and wetting of carbon nanotubes. Science 1994;265:1850-2.

32. Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S. Single crystal metals encapsulated in carbon nanoparticles. Science 1993;259:346-8.

33. Guerret-piécourt C, Bouar YL, Lolseau A, Pascard H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 1994;372:761-5.

34. Hsu W, Li J, Terrones H, et al. Electrochemical production of low-melting metal nanowires. Chem Phys Lett 1999;301:159-66.

35. Hirahara K, Suenaga K, Bandow S, et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 2000;85:5384-7.

36. Tobias G, Shao L, Salzmann CG, Huh Y, Green ML. Purification and opening of carbon nanotubes using steam. J Phys Chem B 2006;110:22318-22.

37. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993;362:522-5.

38. Tsang SC, Chen YK, Harris PJF, Green MLH. A simple chemical method of opening and filling carbon nanotubes. Nature 1994;372:159-62.

39. Hernadi K, Siska A, Thiên-nga L, Forró L, Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion 2001;141-142:203-9.

40. Wiśniewski M, Terzyk AP, Hattori Y, Kaneko K, Okino F, Kruszka B. Hydrothermal opening of multiwall carbon nanotube with H2O2 solution. Chem Phys Lett 2009;482:316-9.

41. Ribeiro H, Schnitzler MC, da Silva WM, Santos AP. Purification of carbon nanotubes produced by the electric arc-discharge method. Surf Interfaces 2021;26:101389.

42. Egemen E, Nirmalakhandan N, Trevizo C. Predicting surface tension of liquid organic solvents. Environ Sci Technol 2000;34:2596-600.

43. Eliseev A, Yashina L, Kharlamova M, Kiselev N. One-dimensional crystals inside single-walled carbon nanotubes: growth, structure and electronic properties. In: Electronic properties of carbon nanotubes. 2011.

44. Sloan J, Kirkland AI, Hutchison JL, Green ML. Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. ACC Chem Res 2002;35:1054-62.

45. Wang D, Saleem MF, Javid M, et al. Formation of Sn filled CNTs nanocomposite: study of their magnetic, dielectric properties and enhanced microwave absorption performance at gigahertz frequencies. Ceram Int 2022;48:21961-71.

46. Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 2013;4:2162.

47. Belandria E, Millot M, Broto J, et al. Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D Tellurium. Carbon 2010;48:2566-72.

48. Kitaura R, Nakanishi R, Saito T, Yoshikawa H, Awaga K, Shinohara H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew Chem Int Ed 2009;48:8298-302.

49. Kharlamova MV. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J Mater Sci 2014;49:8402-11.

50. Stonemeyer S, Cain JD, Oh S, et al. Stabilization of NbTe3, VTe3 and TiTe3 via nanotube encapsulation. J Am Chem Soc 2021;143:4563-8.

51. Pham T, Oh S, Stetz P, et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 2018;361:263-6.

52. Kharlamova MV, Yashina LV, Lukashin AV. Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 2013;112:297-304.

53. Kashtiban RJ, Patrick CE, Ramasse Q, Walton RI, Sloan J. Picoperovskites: the smallest conceivable isolated halide perovskite structures formed within carbon nanotubes. Adv Mater 2023;35:e2208575.

54. Yu WJ, Liu C, Zhang L, et al. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv Sci 2016;3:1600113.

55. Calatayud DG, Ge H, Kuganathan N, et al. Encapsulation of cadmium selenide nanocrystals in biocompatible nanotubes: DFT calculations, X-ray diffraction investigations, and confocal fluorescence imaging. Chem Eur 2018;7:144-58.

56. Norman LT, Biskupek J, Rance GA, Stoppiello CT, Kaiser U, Khlobystov AN. Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes. Nano Res 2022;15:1282-7.

57. Popple D, Dogan M, Hoang TV, et al. Charge-induced phase transition in encapsulated HfTe2 nanoribbons. Phys Rev Mater 2023;7:L013001.

58. Wang Z, Zhao K, Li H, et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. J Mater Chem 2011;21:171-80.

59. Carter R, Suyetin M, Lister S, et al. Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 2014;43:7391-9.

60. Wang Z, Li H, Liu Z, et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J Am Chem Soc 2010;132:13840-7.

61. Koshino M, Niimi Y, Nakamura E, et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nat Chem 2010;2:117-24.

62. Simon F, Kuzmany H, Rauf H, et al. Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem Phys Lett 2004;383:362-7.

63. Shimada T, Ohno Y, Okazaki T, et al. Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors. Phys E Low Dimens Syst Nanostruct 2004;21:1089-92.

64. Luzzi DE, Smith BW, Russo R, et al. Encapsulation of metallofullerenes and metallocenes in carbon nanotubes. In AIP Conference Proceedings; 2001, pp. 622-6.

65. Suenaga K, Hirahara K, Bandow S, et al. Core-level spectroscopy on the valence state of encaged metal in metallofullerene-peapods. In AIP Conference Proceedings; 2001, pp. 256-60.

66. Suenaga K, Taniguchi R, Shimada T, Okazaki T, Shinohara H, Iijima S. Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod. Nano Lett 2003;3:1395-8.

67. Kuzmany H, Pfeiffer R, Simon F. The growth of nanophases in the clean room inside single-wall carbon nanotubes. Synth Met 2005;155:690-3.

68. Zhong R, Tao J, Yang X, et al. Preparation of carbon nanotubes with high filling rate of copper nanoparticles. Microporous Mesoporous Mater 2022;344:112231.

69. Lee J, Kim H, Kahng SJ, et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002;415:1005-8.

70. Botos A, Biskupek J, Chamberlain TW, et al. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J Am Chem Soc 2016;138:8175-83.

71. Béjar L, Mejía AA, Parra C, et al. Analysis of Raman spectroscopy and SEM of carbon nanotubes obtain by CVD. Microsc Microanal 2018;24:1092-3.

72. Caccamo MT, Mavilia G, Magazù S. Thermal investigations on carbon nanotubes by spectroscopic techniques. Appl Sci 2020;10:8159.

73. Banhart F. Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J Mater Sci 2006;41:4505-11.

74. Oxley MP, Lupini AR, Pennycook SJ. Ultra-high resolution electron microscopy. Rep Prog Phys 2017;80:026101.

75. Urban KW, Barthel J, Houben L, et al. Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM). Prog Mater Sci 2023;133:101037.

76. Guan L, Suenaga K, Shi Z, Gu Z, Iijima S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett 2007;7:1532-5.

77. Qin J, Liao P, Si M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat Electron 2020;3:141-7.

78. Fu C, Oviedo MB, Zhu Y, et al. Confined lithium-sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano 2018;12:9775-84.

79. Corio P, Santos A, Santos P, et al. Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 2004;383:475-80.

80. Zhang J, Guo S, Wei J, et al. High-efficiency encapsulation of Pt nanoparticles into the channel of carbon nanotubes as an enhanced electrocatalyst for methanol oxidation. Chemistry 2013;19:16087-92.

81. Kozhuharova R, Ritschel M, Elefant D, et al. Synthesis and characterization of aligned Fe-filled carbon nanotubes on silicon substrates. J Mater Sci Mater Electron 2003;14:789-91.

82. Yao Y, Chen H, Lian C, et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J Hazard Mater 2016;314:129-39.

83. Gao X, Zhang Y, Chen X, et al. Carbon nanotubes filled with metallic nanowires. Carbon 2004;42:47-52.

84. Shi L, Rohringer P, Suenaga K, et al. Confined linear carbon chains as a route to bulk carbyne. Nat Mater 2016;15:634-9.

85. Lenz K, Narkowicz R, Wagner K, et al. Magnetization dynamics of an individual single-crystalline Fe-filled carbon nanotube. Small 2019;15:e1904315.

86. Aryee D, Seifu D. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes. J Magn Magn Mater 2017;429:161-5.

87. Xu S, Li P, Lu Y. In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res 2018;11:625-32.

88. Bingham JT, Proudian AP, Vyas S, Zimmerman JD. Understanding fragmentation of organic small molecules in atom probe tomography. J Phys Chem Lett 2021;12:10437-43.

89. Jordan JW, Lowe GA, McSweeney RL, et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv Mater 2019;31:e1904182.

90. Smith BW, Monthioux M, Luzzi DE. Encapsulated C60 in carbon nanotubes. Nature 1998;396:323-4.

91. Botos Á, Khlobystov AN, Botka B, et al. Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys Status Solidi B 2010;247:2743-5.

92. Ashino M, Obergfell D, Haluska M, et al. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 2008;3:337-41.

93. Khlobystov AN, Porfyrakis K, Kanai M, et al. Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew Chem Int Ed 2004;43:1386-9.

94. Morgan DA, Sloan J, Green ML. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem Commun 2002;20:2442-3.

95. Khlobystov AN, Britz DA, Briggs GA. Molecules in carbon nanotubes. ACC Chem Res 2005;38:901-9.

96. Villalva J, Develioglu A, Montenegro-Pohlhammer N, et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat Commun 2021;12:1578.

97. Lee CH, Kang KT, Park KS, et al. The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor. Jpn J Appl Phys 2003;42:5392-4.

98. Friedrichs S, Sloan J, Green MLH, Meyer RR, Kirkland AI, Hutchison JL. Complete characterisation of a Sb2O3/(21,-8)SWNT inclusion composite. Chem Commun 2001;10:929-30.

99. Brown G, Bailey SR, Sloan J, et al. Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem Commun 2001;9:845-6.

100. Eliseev AA, Chernysheva MV, Verbitskii NI, et al. Chemical reactions within single-walled carbon nanotube channels. Chem Mater 2009;21:5001-3.

101. Nagata M, Shukla S, Nakanishi Y, et al. Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes. Nano Lett 2019;19:4845-51.

102. Eliseev A, Yashina L, Brzhezinskaya M, et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 2010;48:2708-21.

103. Eliseev A, Yashina L, Verbitskiy N, et al. Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 2012;50:4021-39.

104. Kharlamova MV, Yashina LV, Volykhov AA, et al. Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 2012;85:34.

105. Li L, Lin T, Doig J, et al. Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: photoluminescence and Raman spectra. Phys Rev B 2006;74:245418.

106. Stoppiello CT, Biskupek J, Li ZY, et al. A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale 2017;9:14385-94.

107. Cain JD, Oh S, Azizi A, et al. Ultranarrow TaS2 nanoribbons. Nano Lett 2021;21:3211-7.

108. Meyer S, Pham T, Oh S, et al. Metal-insulator transition in quasi-one-dimensional HfTe3 in the few-chain limit. Phys Rev B 2019;100:4.

109. Cabana L, Ballesteros B, Batista E, et al. Synthesis of PbI2 single-layered inorganic nanotubes encapsulated within carbon nanotubes. Adv Mater 2014;26:2016-21.

110. Wang L, Sofer Z, Bouša D, et al. Graphane nanostripes. Angew Chem Int Ed 2016;55:13965-9.

111. Fu L, Shang C, Zhou S, Guo Y, Zhao J. Transition metal halide nanowires: a family of one-dimensional multifunctional building blocks. Appl Phys Lett 2022;120:023103.

112. Kharlamova MV. Kinetics, electronic properties of filled carbon nanotubes investigated with spectroscopy for applications. Nanomaterials 2022;13:176.

113. Nonnenmacher M, Wickramasinghe H. Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 1992;42-44:351-4.

114. Kharlamova MV, Eliseev AA, Yashina LV, et al. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Lett 2010;91:196-200.

115. Kharlamova MV, Brzhezinskay MM, Vinogradov AS, et al. The formation and properties of one-dimensional FeHal2 (Hal = Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes. Nanotechnol Russ 2009;4:634-46.

116. Kharlamova MV, Yashina LV, Lukashin AV. Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 2013;48:8412-9.

117. Kharlamova MV, Volykhov AA, Yashina LV, Egorov AV, Lukashin AV. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J Mater Sci 2015;50:5419-30.

118. Kharlamova MV. Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Appl Phys A 2013;111:725-31.

119. Kharlamova MV. Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Lett 2013;98:272-7.

120. Yashina LV, Eliseev AA, Kharlamova MV, et al. Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 2011;115:3578-86.

121. Si R, Fischer CF. Electron affinities of at and its homologous elements Cl, Br, and I. Phys Rev A 2018;98:052504.

122. Jorio A, Saito R. Raman spectroscopy for carbon nanotube applications. J Appl Phys 2021;129:021102.

123. Kharlamova MV, Eliseev AA, Yashina LV, Lukashin AV, Tretyakov YD. Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides. J Phys Conf Ser 2012;345:012034.

124. Kharlamova MV, Yashina LV, Eliseev AA, et al. Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 2012;249:2328-32.

125. Kharlamova MV, Kramberger C, Mittelberger A. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes. Appl Phys A 2017;123:239.

126. Kharlamova MV, Kramberger C, Pichler T. Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride: semiconducting response in SWCNTs filled with CdCl2. Phys Status Solidi B 2016;253:2433-9.

127. Kharlamova MV, Sauer M, Saito T, et al. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 2015;7:1383-91.

128. Nascimento VV, Neves WQ, Alencar RS, et al. Origin of the giant enhanced raman scattering by sulfur chains encapsulated inside single-wall carbon nanotubes. ACS Nano 2021;15:8574-82.

129. Li G, Fu C, Oviedo MB, et al. Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes. J Am Chem Soc 2016;138:40-3.

130. Mijit E, Trapananti A, Minicucci M, et al. Development of a high temperature diamond anvil cell for x ray absorption experiments under extreme conditions. Radiat Phys Chem 2020;175:108106.

131. Fedoseeva YV, Orekhov AS, Chekhova GN, et al. Single-walled carbon nanotube reactor for redox transformation of mercury dichloride. ACS Nano 2017;11:8643-9.

132. Gets AV, Krainov VP. Conductivity of single-walled carbon nanotubes. J Exp Theor Phys 2016;123:1084-9.

133. Khosravi M, Badehian HA, Habibinejad M. Optical properties of double walled carbon nanotubes. J Electron Spectros Relat Phenomena 2021;248:147058.

134. Shang Y, Hua C, Xu W, et al. Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett 2016;16:1768-75.

135. Chen C, Song C, Yang J, et al. Intramolecular p-i-n junction photovoltaic device based on selectively doped carbon nanotubes. Nano Energy 2017;32:280-6.

136. Chiba T, Amma Y, Takashiri M. Heat source free water floating carbon nanotube thermoelectric generators. Sci Rep 2021;11:14707.

137. Wang JG, Liu H, Zhang X, Li X, Liu X, Kang F. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 2018;14:e1703950.

138. Bychko IB, Abakumov AA, Lemesh NV, Strizhak PE. Catalytic activity of multiwalled carbon nanotubes in acetylene hydrogenation. ChemCatChem 2017;9:4470-4.

139. Liu J, Lu J, Lin X, et al. The electronic properties of chiral carbon nanotubes. Comput Mater Sci 2017;129:290-4.

140. Li Y, Kaneko T, Kong J, Hatakeyama R. Photoswitching in azafullerene encapsulated single-walled carbon nanotube FET devices. J Am Chem Soc 2009;131:3412-3.

141. Li YF, Hatakeyama R, Shishido J, Kato T, Kaneko T. Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl Phys Lett 2007;90:173127.

142. Xu L, Hu Y, Zhang H, Jiang H, Li C. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustain Chem Eng 2016;4:4251-5.

143. Yu WJ, Liu C, Hou PX, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 2015;9:5063-71.

144. Li S, Liu Y, Guo P, Wang C. Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate and long lifespan anode materials in lithium ion batteries. ACS Appl Mater Interfaces 2017;9:26818-25.

145. Liu Y, Wu N, Wang Z, Cao H, Liu J. Fe3O4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability. New J Chem 2017;41:6241-50.

146. Kim S, Song H, Jeong Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery. Carbon 2017;113:371-8.

147. Landi BJ, Ganter MJ, Cress CD, Dileo RA, Raffaelle RP. Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2009;2:638.

148. Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater 2015;14:271-9.

149. Kodama T, Ohnishi M, Park W, et al. Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat Mater 2017;16:892-7.

150. Fukumaru T, Fujigaya T, Nakashima N. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci Rep 2015;5:7951.

151. Aygün M, Stoppiello CT, Lebedeva MA, et al. Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. J Mater Chem A 2017;5:21467-77.

152. Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA. Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem Commun 2014;50:5200-2.

153. Che G, Lakshmi BB, Martin CR, Fisher ER. Metal-nanocluster-filled carbon nanotubes:  catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999;15:750-8.

154. Ellis JE, Star A. Carbon nanotube based gas sensors toward breath analysis. Chempluschem 2016;81:1248-65.

155. Tian R, Wang S, Hu X, et al. Novel approaches for highly selective, room-temperature gas sensors based on atomically dispersed non-precious metals. J Mater Chem A 2020;8:23784-94.

156. Qin M, Li J, Song Y. Toward high sensitivity: perspective on colorimetric photonic crystal sensors. Anal Chem 2022;94:9497-507.

157. Qin Z, Sun X, Zhang H, et al. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J Mater Chem A 2020;8:4447-56.

158. Luo C, Jia J, Gong Y, Wang Z, Fu Q, Pan C. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl Mater Interfaces 2017;9:19955-62.

159. liu H, Jiang H, Du F, Zhang D, Li Z, Zhou H. Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem Eng 2017;5:10538-43.

160. Kim J, Choi S, Lee J, Chung Y, Byun YT. Gas sensing properties of defect-induced single-walled carbon nanotubes. Sens Actuator A Phys 2016;228:688-92.

161. Quang NH, Van Trinh M, Lee B, Huh J. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens Actuators B Chem 2006;113:341-6.

162. Nguyen H, Huh J. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sens Actuators B Chem 2006;117:426-30.

163. Qi P, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 2003;3:347-51.

164. Ramachandran K, Raj Kumar T, Babu KJ, Gnana Kumar G. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci Rep 2016;6:36583.

165. Chimowa G, Tshabalala ZP, Akande AA, et al. Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sens Actuators B Chem 2017;247:11-8.

166. Fedi F, Domanov O, Shiozawa H, et al. Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO2 exposure under ambient conditions. J Mater Chem A 2020;8:9753-9.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/