REFERENCES

1. Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 2003;54:1-29.

2. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 2007;6:454-62.

3. Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD. High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 2002;298:389-92.

4. Hamm CE, Merkel R, Springer O, et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 2003;421:841-3.

5. Tommasini SM, Wearne SL, Hof PR, Jepsen KJ. Percolation theory relates corticocancellous architecture to mechanical function in vertebrae of inbred mouse strains. Bone 2008;42:743-50.

6. Murat D, Falahati V, Bertinetti L, et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol Microbiol 2012;85:684-99.

7. Gautron J, Stapane L, Le Roy N, Nys Y, Rodriguez-Navarro AB, Hincke MT. Avian eggshell biomineralization: an update on its structure, mineralogy and protein tool kit. BMC Mol Cell Biol 2021;22:11.

8. Ramos-Silva P, Benhamada S, Le Roy N, et al. Novel molluskan biomineralization proteins retrieved from proteomics: a case study with Upsalin. Chembiochem 2012;13:1067-78.

9. Beniash E, Simmer JP, Margolis HC. Structural changes in amelogenin upon self-assembly and mineral interactions. J Dent Res 2012;91:967-72.

10. Hosseini S, Naderi-Manesh H, Mountassif D, Cerruti M, Vali H, Faghihi S. C-terminal amidation of an osteocalcin-derived peptide promotes hydroxyapatite crystallization. J Biol Chem 2013;288:7885-93.

11. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci 1998;28:271-98.

12. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-15.

13. Taehoon J, Changyeon K, Eunkyung K, et al. Analysis of microstructure in mouse femur and decalcification effect on microstructure by electron microscopy. J Anal Sci Technol 2010;1:124-9. Available from: https://www.researchgate.net/publication/49587402_Analysis_of_microstructure_in_mouse_femur_and_decalcification_effect_on_microstructure_by_electron_microscopy [Last accessed on 5 July 2023].

14. Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res 2001;57:441-8.

15. Baino F, Yamaguchi S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: review and challenges. Biomimetics 2020;5:57.

16. Suchý T, Bartoš M, Sedláček R, et al. Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials 2021;14:4388.

17. Bonfiglio R, Scimeca M, Urbano N, Bonanno E, Schillaci O. Breast microcalcifications: biological and diagnostic perspectives. Future Oncol 2018;14:3097-9.

18. Busing CM, Keppler U, Menges V. Differences in microcalcification in breast tumors. Virchows Arch A 1981;393:307-13.

19. Barman I, Dingari NC, Saha A, et al. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy. Cancer Res 2013;73:3206-15.

20. Tsolaki E, Bertazzo S. Pathological mineralization: the potential of mineralomics. Materials 2019;12:3126.

21. Tan ACS, Pilgrim MG, Fearn S, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med 2018;10:eaat4544.

22. Kirsch T. Determinants of pathological mineralization. Curr Opin Rheumatol 2006;18:174-80.

23. Reznikov N, Steele JAM, Fratzl P, Stevens MM. A materials science vision of extracellular matrix mineralization. Nat Rev Mater 2016;1:16041.

24. Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997;386:78-81.

25. Yagami K, Suh JY, Enomoto-Iwamoto M, et al. Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb. J Cell Biol 1999;147:1097-108.

26. Yuan FL, Xu RS, Ye JX, Zhao MD, Ren LJ, Li X. Apoptotic bodies from endplate chondrocytes enhance the oxidative stress-induced mineralization by regulating PPi metabolism. J Cell Mol Med 2019;23:3665-75.

27. Wu LN, Genge BR, Dunkelberger DG, LeGeros RZ, Concannon B, Wuthier RE. Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem 1997;272:4404-11.

28. Sekaran S, Vimalraj S, Thangavelu L. The physiological and pathological role of tissue nonspecific alkaline phosphatase beyond mineralization. Biomolecules 2021;11:1564.

29. Franklin BS, Mangan MS, Latz E. Crystal formation in inflammation. Annu Rev Immunol 2016;34:173-202.

30. Poloni LN, Ward MD. The materials science of pathological crystals. Chem Mater 2014;26:477-95.

31. Bazin D, Daudon M, Combes C, Rey C. Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 2012;112:5092-120.

32. Ralph D, van de Wetering K, Uitto J, Li Q. Inorganic pyrophosphate deficiency syndromes and potential treatments for pathologic tissue calcification. Am J Pathol 2022;192:762-70.

33. Singh A, Tandon S, Tandon C. An update on vascular calcification and potential therapeutics. Mol Biol Rep 2021;48:887-96.

34. Fuery MA, Liang L, Kaplan FS, Mohler ER. Vascular ossification: pathology, mechanisms, and clinical implications. Bone 2018;109:28-34.

35. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2018;114:590-600.

36. Vidavsky N, Kunitake JAMR, Estroff LA. Multiple pathways for pathological calcification in the human body. Adv Healthc Mater 2021;10:e2001271.

37. Cazalbou S, Combes C, Eichert D, Rey C. Adaptative physico-chemistry of bio-related calcium phosphates. J Mater Chem 2004;14:2148-53.

38. Zipkin I. The inorganic composition of bones and teeth. In: Schraer H, editor. Biological calcification: cellular and molecular aspects. Boston: Springer; 1970. pp. 69-103.

39. Elsharkawy S, Mata A. Hierarchical biomineralization: from nature’s designs to synthetic materials for regenerative medicine and dentistry. Adv Healthc Mater 2018;7:e1800178.

40. Abou Neel EA, Aljabo A, Strange A, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomed 2016;11:4743-63.

41. Eanes ED, Gillessen IH, Posner AS. Intermediate states in the precipitation of hydroxyapatite. Nature 1965;208:365-7.

42. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater Today 2016;19:69-87.

43. Beniash E, Metzler RA, Lam RS, Gilbert PU. Transient amorphous calcium phosphate in forming enamel. J Struct Biol 2009;166:133-43.

44. Mahamid J, Aichmayer B, Shimoni E, et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 2010;107:6316-21.

45. Termine JD, Posner AS. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 1966;153:1523-5.

46. Habraken WJ, Tao J, Brylka LJ, et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 2013;4:1507.

47. Brown WE, Schroeder LW, Ferris JS. Interlayering of crystalline octacalcium phosphate and hydroxylapatite. J Phys Chem 1979;83:1385-8.

48. Wang Y, Von Euw S, Fernandes FM, et al. Water-mediated structuring of bone apatite. Nat Mater 2013;12:1144-53.

49. Rey C, Combes C. What bridges mineral platelets of bone? Bonekey Rep 2014;3:586.

50. Dorvee JR, Veis A. Water in the formation of biogenic minerals: peeling away the hydration layers. J Struct Biol 2013;183:278-303.

51. Becker RO, Spadaro JA, Berg EW. The trace elements of human bone. J Bone Joint Surg Am 1968;50:326-34.

52. Ellis EH, Spadaro JA, Becker RO. Trace elements in tendon collagen. Clin Orthop Relat Res 1969;65:195-8. Available from: https://www.robertobecker.net/PDFs/BF050-CORR1969.pdf [Last accessed on 5 July 2023].

53. Grynpas MD, Rey C. The effect of fluoride treatment on bone mineral crystals in the rat. Bone 1992;13:423-9.

54. Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: a review, Open Ceram 2021;6:100122.

55. Legros R, Balmain N, Bonel G. Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 1987;41:137-44.

56. Handschin RG, Stern WB. Crystallographic and chemical analysis of human bone apatite (Crista Iliaca). Clin Rheumatol 1994;13 Suppl 1:75-90.

57. Yao X, Carleton SM, Kettle AD, Melander J, Phillips CL, Wang Y. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model. Ann Biomed Eng 2013;41:1139-49.

58. Nelson DG. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J Dent Res 1981;60 Spec No C:1621-9.

59. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 2010;28:433-45.

60. Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev 2017;97:939-93.

61. Akiva A, Malkinson G, Masic A, et al. On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone 2015;75:192-200.

62. Bennet M, Akiva A, Faivre D, et al. Simultaneous Raman microspectroscopy and fluorescence imaging of bone mineralization in living zebrafish larvae. Biophys J 2014;106:L17-9.

63. Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 2006;39:434-42.

64. Simon P, Grüner D, Worch H, et al. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple-helix nanofibril mineralization. Sci Rep 2018;8:13696.

65. Nudelman F, Lausch AJ, Sommerdijk NA, Sone ED. In vitro models of collagen biomineralization. J Struct Biol 2013;183:258-69.

66. Olszta MJ, Cheng X, Jee SS, et al. Bone structure and formation: a new perspective. Mater Sci Eng R Rep 2007;58:77-116.

67. George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008;108:4670-93.

68. Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 2008;108:4551-627.

69. de Jonge LT, van den Beucken JJ, Leeuwenburgh SC, Hamers AA, Wolke JG, Jansen JA. In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings. Acta Biomater 2009;5:2773-82.

70. Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 2008;108:4694-715.

71. Fleisch H, Bisaz S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 1962;203:671-5.

72. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol 2002;47:281-91.

73. Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH. Dentin basic structure and composition-an overview. Endod Topics 2009;20:3-29.

74. Linde A. Dentin mineralization and the role of odontoblasts in calcium transport. Connect Tissue Res 1995;33:163-70.

75. Hao J, Ramachandran A, George A. Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization. J Histochem Cytochem 2009;57:227-37.

76. Chatzistavrou X, Papagerakis S, Ma PX, Papagerakis P. Innovative approaches to regenerate enamel and dentin. Int J Dent 2012;2012:856470.

77. Vieira AP, Hancock R, Limeback H, Maia R, Grynpas MD. Is fluoride concentration in dentin and enamel a good indicator of dental fluorosis? J Dent Res 2004;83:76-80.

78. White SN, Luo W, Paine ML, Fong H, Sarikaya M, Snead ML. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J Dent Res 2001;80:321-6.

79. Giacaman R, Perez V, Carrera C. 5 - Mineralization processes in hard tissues: teeth. In: Biomineralization and biomaterials. Amsterdam, The Netherlands: Elsevier; 2016. pp. 147-85.

80. Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem C Nanomater Interfaces 2007;111:6398-404.

81. Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC. The chemistry of enamel development. Int J Dev Biol 1995;39:145-52.

82. Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 1998;9:128-61.

83. Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci 2012;17:1996-2023.

84. Yamamoto T, Hasegawa T, Yamamoto T, Hongo H, Amizuka N. Histology of human cementum: its structure, function, and development. Jpn Dent Sci Rev 2016;52:63-74.

85. Gonçalves PF, Sallum EA, Sallum AW, Casati MZ, Toledo S, Júnior FHN. Dental cementum reviewed: development, structure, composition, regeneration and potential functions. Braz J Oral Sci 2005;4:651-8. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8641790 [Last accessed on 5 July 2023].

86. Neiders ME, Eick JD, Miller WA, Leitner JW. Electron probe microanalysis of cementum and underlying dentin in young permanent teeth. J Dent Res 1972;51:122-30.

87. Nakagaki H, Weatherell JA, Strong M, Robinson C. Distribution of fluoride in human cementum. Arch Oral Biol 1985;30:101-4.

88. Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: regulation of mineralization in the periodontium. Genesis 2022;60:e23474.

89. Foster BL, Nociti FH, Somerman MJ. Development and structure of cementum. In: Naji S, Rendu W, Gourichon L, editors. Dental cementum in anthropology. Cambridge: Cambridge University Press; 2022. pp. 46-64.

90. Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2015;244:239-53.

91. Zhao X, Yang H, Yamoah EN, Lundberg YW. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial organic matrix. Dev Biol 2007;304:508-24.

92. Thompson RB, Reffatto V, Bundy JG, et al. Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci USA 2015;112:1565-70.

93. Landis WJ, Moradian-Oldak J, Weiner S. Topographic imaging of mineral and collagen in the calcifying turkey tendon. Connect Tissue Res 1991;25:181-96.

94. Siegal DS, Wu JS, Newman JS, Del Cura JL, Hochman MG. Calcific tendinitis: a pictorial review. Can Assoc Radiol J 2009;60:263-72.

95. Reynolds JL, Skepper JN, McNair R, et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 2005;16:2920-30.

96. de Faria LL, Babler F, Ferreira LC, de Noronha Junior OA, Marsolla FL, Ferreira DL. Soft tissue calcifications: a pictorial essay. Radiol Bras 2020;53:337-44.

97. Wang D, Wang X, Huang L, et al. Unraveling an innate mechanism of pathological mineralization-regulated inflammation by a nanobiomimetic system. Adv Healthc Mater 2021;10:e2101586.

98. Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol 2004;15:2959-64.

99. Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 2005;25:1256-61.

100. Shanahan CM. Inflammation ushers in calcification: a cycle of damage and protection? Circulation 2007;116:2782-5.

101. Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis 2015;238:220-30.

102. Słojewski M, Czerny B, Safranow K, et al. Microelements in stones, urine, and hair of stone formers: a new key to the puzzle of lithogenesis? Biol Trace Elem Res 2010;137:301-16.

103. Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 2013;24:2153-66.

104. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008;42:456-66.

105. Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep 2014;12:338-50.

106. Kurdi MS. Chronic fluorosis: the disease and its anaesthetic implications. Indian J Anaesth 2016;60:157-62.

107. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000;289:1508-14.

108. Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 2006;443:28-38.

109. Feroz S, Khan AS. 7-fluoride-substituted hydroxyapatite. In: Khan AS, Chaudhry AA, editor. Handbook of ionic substituted hydroxyapatites, Soston, UK: Woodhead, 2020; pp. 175-96.

110. Poole KE, Compston JE. Osteoporosis and its management. BMJ 2006;333:1251-6.

111. Tamimi I, Cortes ARG, Sánchez-Siles JM, et al. Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis. Bone 2020;140:115558.

112. Nobakhti S, Shefelbine SJ. On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone. Curr Osteoporos Rep 2018;16:404-10.

113. Shah FA. The many facets of micropetrosis - magnesium whitlockite deposition in bisphosphonate-exposed human alveolar bone with osteolytic metastasis. Micron 2023;168:103441.

114. Shah FA. Magnesium whitlockite - omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomater 2021;125:72-82.

115. Meyer F, Dittmann A, Kornak U, et al. Chondrocytes from osteoarthritic and chondrocalcinosis cartilage represent different phenotypes. Front Cell Dev Biol 2021;9:622287.

116. Fuerst M, Bertrand J, Lammers L, et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 2009;60:2694-703.

117. Derfus BA, Kurian JB, Butler JJ, et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol 2002;29:570-4.

118. Halverson PB, McCarty DJ. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann Rheum Dis 1986;45:603-5.

119. Nalbant S, Martinez JA, Kitumnuaypong T, Clayburne G, Sieck M, Schumacher HR Jr. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthr Cartil 2003;11:50-4. Available from: https://www.sciencedirect.com/science/article/pii/S1063458402908617 [Last accessed on 5 July 2023].

120. Rosenthal AK, Mattson E, Gohr CM, Hirschmugl CJ. Characterization of articular calcium-containing crystals by synchrotron FTIR. Osteoarthr Cartil 2008;16:1395-402.

121. Yan JF, Qin WP, Xiao BC, et al. Pathological calcification in osteoarthritis: an outcome or a disease initiator? Biol Rev Camb Philos Soc 2020;95:960-85.

122. Rosenthal AK. Articular cartilage vesicles and calcium crystal deposition diseases. Curr Opin Rheumatol 2016;28:127-32.

123. Scotchford CA, Vickers M, Ali SY. The isolation and characterization of magnesium whitlockite crystals from human articular cartilage. Osteoarthr Cartil 1995;3:79-94.

124. Lee RS, Kayser MV, Ali SY. Calcium phosphate microcrystal deposition in the human intervertebral disc. J Anat 2006;208:13-9.

125. Hayes CW, Conway WF. Calcium hydroxyapatite deposition disease. Radiographics 1990;10:1031-48.

126. Uhthoff HK, Loehr JW. Calcific tendinopathy of the rotator cuff: pathogenesis, diagnosis, and management. J Am Acad Orthop Surg 1997;5:183-91.

127. Landis WJ. A study of calcification in the leg tendons from the domestic turkey. J Ultrastruct Mol Struct Res 1986;94:217-38.

128. Oliva F, Via AG, Maffulli N. Physiopathology of intratendinous calcific deposition. BMC Med 2012;10:95.

129. McCarty DJ Jr, Gatter RA. Recurrent acute inflammation associated with focal apatite crystal deposition. Arthritis Rheum 1966;9:804-19.

130. Gärtner J, Simons B. Analysis of calcific deposits in calcifying tendinitis. Clin Orthop Relat Res 1990;254:111-20.

131. Riley GP, Harrall RL, Constant CR, Cawston TE, Hazleman BL. Prevalence and possible pathological significance of calcium phosphate salt accumulation in tendon matrix degeneration. Ann Rheum Dis 1996;55:109-15.

132. Penel G, Leroy G, Rey C, Bres E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 1998;63:475-81.

133. Barron MJ, McDonnell ST, Mackie I, Dixon MJ. Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis 2008;3:31.

134. Jin Y, Yip HK. Supragingival calculus: formation and control. Crit Rev Oral Biol Med 2002;13:426-41.

135. White DJ. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 1997;105:508-22.

136. Sakae T, Yamamoto H, Hirai G. Mode of occurrence of brushite and whitlockite in a sialolith. J Dent Res 1981;60:842-4.

137. Anneroth G, Eneroth CM, Isacsson G. Crystalline structure of salivary calculi. a microradiographic and microdiffractometric study. J Oral Pathol 1975;4:266-72.

138. Burnstein LS, Boskey AL, Tannenbaum PJ, Posner AS, Mandel ID. The crystal chemistry of submandibular and parotid salivary gland stones. J Oral Pathol 1979;8:284-91.

139. Boskey AL, Burstein LS, Mandel ID. Phospholipids associated with human parotid gland sialoliths. Arch Oral Biol 1983;28:655-7.

140. Nicoll R, Henein MY. The predictive value of arterial and valvular calcification for mortality and cardiovascular events. Int J Cardiol Heart Vessel 2014;3:1-5.

141. Higgins CL, Marvel SA, Morrisett JD. Quantification of calcification in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2005;25:1567-76.

142. Reid JD, Andersen ME. Medial calcification (whitlockite) in the aorta. Atherosclerosis 1993;101:213-24.

143. Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 2010;7:528-36.

144. You AYF, Bergholt MS, St-Pierre JP, et al. Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Sci Adv 2017;3:e1701156.

145. Chow B, Rabkin SW. The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev 2015;20:291-303.

146. Barasch E, Gottdiener JS, Marino Larsen EK, Chaves PH, Newman AB. Cardiovascular morbidity and mortality in community-dwelling elderly individuals with calcification of the fibrous skeleton of the base of the heart and aortosclerosis (The Cardiovascular Health Study). Am J Cardiol 2006;97:1281-6.

147. Aikawa E, Nahrendorf M, Figueiredo JL, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007;116:2841-50.

148. Wick G, Grundtman C. Inflammation and atherosclerosis. Boston: Springer Science & Business Media; 2011.

149. Saita A, Bonaccorsi A, Motta M. Stone composition: where do we stand? Urol Int 2007;79 Suppl 1:16-9.

150. Evan AP, Coe FL, Rittling SR, et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 2005;68:145-54.

151. He JY, Deng SP, Ouyang JM. Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients. IEEE Trans Nanobiosci 2010;9:156-63.

152. Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv Urol 2018;2018:3068365.

153. Chaudhary A, Singla SK, Tandon C. In vitro evaluation of terminalia arjuna on calcium phosphate and calcium oxalate crystallization. Indian J Pharm Sci 2010;72:340-5.

154. Bensatal A, Ouahrani MR. Inhibition of crystallization of calcium oxalate by the extraction of Tamarix gallica L. Urol Res 2008;36:283-7.

155. Griffith DP. Struvite stones. Kidney Int 1978;13:372-82.

156. Luigia M, Summ V. A review of pathological biomineral analysis techniques and classification schemes. In: Aydinalp C, editor. An introduction to the study of mineralogy. London: InTech; 2012.

157. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest 2005;115:2598-608.

158. Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int 2013;2013:292953.

159. Coe FL, Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones. N Engl J Med 1992;327:1141-52.

160. Fleisch H. Inhibitors and promoters of stone formation. Kidney Int 1978;13:361-71.

161. Ebrahimpour A, Perez L, Nancollas GH. Induced crystal growth of calcium oxalate monohydrate at hydroxyapatite surfaces. the influence of human serum albumin, citrate, and magnesium. Langmuir 1991;7:577-83.

162. Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int 1998;53:194-9.

163. Stapleton A, Ryall U. Blood coagulation proteins and urolithiasis are linked: crystal matrix protein is the Fl activation peptide of human prothrombin. Br J Urol 1995;75:712-9.

164. Pillay SN, Asplin JR, Coe FL. Evidence that calgranulin is produced by kidney cells and is an inhibitor of calcium oxalate crystallization. Am J Physiol 1998;275:F255-61.

165. Loeb JA, Sohrab SA, Huq M, Fuerst DR. Brain calcifications induce neurological dysfunction that can be reversed by a bone drug. J Neurol Sci 2006;243:77-81.

166. Smeyers-Verbeke J, Michotte Y, Pelsmaeckers J, et al. The chemical composition of idiopathic nonarteriosclerotic cerebral calcifications. Neurology 1975;25:48-57.

167. Oliveira JR, Oliveira MF. Primary brain calcification in patients undergoing treatment with the biphosphanate alendronate. Sci Rep 2016;6:22961.

168. Lemos RR, Ferreira JBMM, Keasey MP, Oliveira JRM. Chapter Fourteen - an update on primary familial brain calcification. In: Bhatia KP, Schneider SA, editors. International review of neurobiology. Cambridge: Academic Press. 2013; pp. 349-71.

169. Jankovic J. Searching for a relationship between manganese and welding and Parkinson’s disease. Neurology 2005;64:2021-8.

170. Bekiesinska-Figatowska M, Mierzewska H, Jurkiewicz E. Basal ganglia lesions in children and adults. Eur J Radiol 2013;82:837-49.

171. Simoni M, Pantoni L, Pracucci G, et al. Prevalence of CT-detected cerebral abnormalities in an elderly Swedish population sample. Acta Neurol Scand 2008;118:260-7.

172. Yamada M, Asano T, Okamoto K, et al. High frequency of calcification in basal ganglia on brain computed tomography images in Japanese older adults. Geriatr Gerontol Int 2013;13:706-10.

173. Deng H, Zheng W, Jankovic J. Genetics and molecular biology of brain calcification. Ageing Res Rev 2015;22:20-38.

174. Anderson SB, de Souza RF, Hofmann-Rummelt C, Seitz B. Corneal calcification after amniotic membrane transplantation. Br J Ophthalmol 2003;87:587-91.

175. Nicholson BP, Lystad LD, Emch TM, Singh AD. Idiopathic dural optic nerve sheath calcification. Br J Ophthalmol 2011;95:290, 299.

176. Russell SR, Mullins RF, Schneider BL, Hageman GS. Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. Am J Ophthalmol 2000;129:205-14.

177. Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 2005;102:7227-32.

178. Castellanos MR, Paramanathan K, El-Sayegh S, Forte F, Buchbinder S, Kleiner M. Breast cancer screening in women with chronic kidney disease: the unrecognized effects of metastatic soft-tissue calcification. Nat Clin Pract Nephrol 2008;4:337-41.

179. Yildiz S, Toprak H, Aydin S, et al. The association of breast arterial calcification and metabolic syndrome. Clinics 2014;69:841-6.

180. Scimeca M, Giannini E, Antonacci C, Pistolese CA, Spagnoli LG, Bonanno E. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer 2014;14:286.

181. Scimeca M, Antonacci C, Colombo D, Bonfiglio R, Buonomo OC, Bonanno E. Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers. Tumour Biol 2016;37:5427-35.

182. Hassler O. Microradiographic investigations of calcifications of the female breast. Cancer 1969;23:1103-9.

183. Scott R, Stone N, Kendall C, Geraki K, Rogers K. Relationships between pathology and crystal structure in breast calcifications: an in situ X-ray diffraction study in histological sections. NPJ Breast Cancer 2016;2:16029.

184. Kunitake JAMR, Choi S, Nguyen KX, et al. Correlative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas. J Struct Biol 2018;202:25-34.

185. Lakhdar A, Daudon M, Mathieu M, Kellum A, Balleyguier C, Bazin D. Underlining the complexity of the structural and chemical characteristics of ectopic calcifications in breast tissues through FE-SEM and μFTIR spectroscopy. Comptes Rendus Chimie 2016;19:1610-24.

186. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res 2002;62:5375-80.

187. Scott R, Kendall C, Stone N, Rogers K. Elemental vs. phase composition of breast calcifications. Sci Rep 2017;7:136.

188. Tandan M, Talukdar R, Reddy DN. Management of pancreatic calculi: an update. Gut Liver 2016;10:873-80.

189. Narasimhulu KV, Gopal NO, Rao JL, et al. Structural studies of the biomineralized species of calcified pancreatic stones in patients suffering from chronic pancreatitis. Biophys Chem 2005;114:137-47.

190. Pitchumoni CS, Viswanathan KV, Gee Varghese PJ, Banks PA. Ultrastructure and elemental composition of human pancreatic calculi. Pancreas 1987;2:152-8.

191. Klimas R, Bennett B, Gardner WA Jr. Prostatic calculi: a review. Prostate 1985;7:91-6.

192. Sutor DJ, Wooley SE. The crystalline composition of prostatic calculi. Br J Urol 1974;46:533-5.

193. Hyun JS. Clinical significance of prostatic calculi: a review. World J Mens Health 2018;36:15-21.

194. Wallingford MC, Benson C, Chavkin NW, Chin MT, Frasch MG. Placental vascular calcification and cardiovascular health: it is time to determine how much of maternal and offspring health is written in stone. Front Physiol 2018;9:1044.

195. Poggi SH, Bostrom KI, Demer LL, Skinner HC, Koos BJ. Placental calcification: a metastatic process? Placenta 2001;22:591-6.

196. Chen KH, Chen LR, Lee YH. Exploring the relationship between preterm placental calcification and adverse maternal and fetal outcome. Ultrasound Obstet Gynecol 2011;37:328-34.

197. Marchiori E, Hochhegger B, Zanetti G. Lymph node calcifications. J Bras Pneumol 2018;44:83.

198. Sakae T, Yamamoto H. Crystals and calcification patterns in two lymph node calcifications. J Oral Pathol 1987;16:456-62.

199. Kim MH, Kim HJ, Kim NN, Yoon HS, Ahn SH. A rotational ablation tool for calcified atherosclerotic plaque removal. Biomed Microdevices 2011;13:963-71.

200. Kaul A, Dhalla PS, Bapatla A, et al. Current treatment modalities for calcified coronary artery disease: a review article comparing novel intravascular lithotripsy and traditional rotational atherectomy. Cureus 2020;12:e10922.

201. Jahnen-Dechent W, Schäfer C, Ketteler M, McKee MD. Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med 2008;86:379-89.

202. Schibler D, Russell RG, Fleisch H. Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin Sci 1968;35:363-72.

203. O’Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 2011;79:512-7.

204. Wu M, Rementer C, Giachelli CM. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 2013;93:365-73.

205. Schinke T, Amendt C, Trindl A, Pöschke O, Müller-Esterl W, Jahnen-Dechent W. The serum protein α2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. J Biol Chem 1996;271:20789-96.

206. Heiss A, Jahnen-Dechent W, Endo H, Schwahn D. Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2007;2:16-20.

207. Heiss A, DuChesne A, Denecke B, et al. Structural basis of calcification inhibition by α2-HS glycoprotein/fetuin-A. J Biol Chem 2003;278:13333-41.

208. Jahnen-Dechent W, Heiss A, Schäfer C, Ketteler M. Fetuin-A regulation of calcified matrix metabolism. Circ Res 2011;108:1494-509.

209. Zebboudj AF, Imura M, Boström K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 2002;277:4388-94.

210. Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res 2005;97:105-14.

211. Mckee M, Nanci A. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: Ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 1996;33:141-64.

212. McKee MD, Nanci A. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 1996;35:197-205.

213. Oikonomaki T, Papasotiriou M, Ntrinias T, et al. The effect of vitamin K2 supplementation on vascular calcification in haemodialysis patients: a 1-year follow-up randomized trial. Int Urol Nephrol 2019;51:2037-44.

214. Eastell R, Walsh JS, Watts NB, Siris E. Bisphosphonates for postmenopausal osteoporosis. Bone 2011;49:82-8.

215. Francis MD, Russell RG, Fleisch H. Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 1969;165:1264-6.

216. van der Sluis IM, Boot AM, Vernooij M, Meradji M, Kroon AA. Idiopathic infantile arterial calcification: clinical presentation, therapy and long-term follow-up. Eur J Pediatr 2006;165:590-3.

217. Persy V, De Broe M, Ketteler M. Bisphosphonates prevent experimental vascular calcification: treat the bone to cure the vessels? Kidney Int 2006;70:1537-8.

218. Shiraishi N, Kitamura K, Miyoshi T, et al. Successful treatment of a patient with severe calcific uremic arteriolopathy (calciphylaxis) by etidronate disodium. Am J Kidney Dis 2006;48:151-4.

219. Jansen RS, Duijst S, Mahakena S, et al. ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol 2014;34:1985-9.

220. Li Q, Huang J, Pinkerton AB, et al. Inhibition of tissue-nonspecific alkaline phosphatase attenuates ectopic mineralization in the Abcc6(-/-) mouse model of PXE but not in the enpp1 mutant mouse models of GACI. J Invest Dermatol 2019;139:360-8.

221. Pomozi V, Brampton C, van de Wetering K, et al. Pyrophosphate supplementation prevents chronic and acute calcification in ABCC6-deficient mice. Am J Pathol 2017;187:1258-72.

222. Zhao J, Kingman J, Sundberg JP, Uitto J, Li Q. Plasma PPi deficiency is the major, but not the exclusive, cause of ectopic mineralization in an Abcc6(-/-) mouse model of PXE. J Invest Dermatol 2017;137:2336-43.

223. Garti N, Tibika F, Sarig S, Perlberg S. The inhibitory effect of polymeric carboxylic amino-acids and urine on calcium oxalate crystallization. Biochem Biophys Res Commun 1980;97:1154-62.

224. Kleinman JG, Alatalo LJ, Beshensky AM, Wesson JA. Acidic polyanion poly(acrylic acid) prevents calcium oxalate crystal deposition. Kidney Int 2008;74:919-24.

225. Worcester EM, Blumenthal SS, Beshensky AM, Lewand DL. The calcium oxalate crystal growth inhibitor protein produced by mouse kidney cortical cells in culture is osteopontin. J Bone Miner Res 1992;7:1029-36.

226. Wesson JA, Johnson RJ, Mazzali M, et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 2003;14:139-47.

227. Cohen GF, Vyas NS. Sodium thiosulfate in the treatment of calciphylaxis. J Clin Aesthet Dermatol 2013;6:41-4.

228. Guerra G, Shah RC, Ross EA. Rapid resolution of calciphylaxis with intravenous sodium thiosulfate and continuous venovenous haemofiltration using low calcium replacement fluid: case report. Nephrol Dial Transplant 2005;20:1260-2.

229. Cicone JS, Petronis JB, Embert CD, Spector DA. Successful treatment of calciphylaxis with intravenous sodium thiosulfate. Am J Kidney Dis 2004;43:1104-8.

230. Yatzidis H. Successful sodium thiosulphate treatment for recurrent calcium urolithiasis. Clin Nephrol 1985;23:63-7.

231. Sun XY, Xu M, Ouyang JM. Effect of crystal shape and aggregation of calcium oxalate monohydrate on cellular toxicity in renal epithelial cells. ACS Omega 2017;2:6039-52.

232. Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M. Heavy elements in urinary stones. Urol Res 2007;35:179-84.

233. Meyer J, Angino E. The role of trace metals in calcium urolithiasis. Invest Urol 1977;14:347-50.

234. Muñoz JA, Valiente M. Effects of trace metals on the inhibition of calcium oxalate crystallization. Urol Res 2005;33:267-72.

235. Atakan IH, Kaplan M, Seren G, Aktoz T, Gül H, Inci O. Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. Int Urol Nephrol 2007;39:351-6.

236. Levy RJ, Schoen FJ, Flowers WB, Staelin ST. Initiation of mineralization in bioprosthetic heart valves: studies of alkaline phosphatase activity and its inhibition by AlCl3 or FeCl3 preincubations. J Biomed Mater Res 1991;25:905-35.

237. Ali SY. Apatite-type crystal deposition in arthritic cartilage. Scan Electron Microsc 1985;Pt 4:1555-66.

238. Usai D, Maritan L, Dal Sasso G, et al. Late pleistocene/early holocene evidence of prostatic stones at Al khiday cemetery, central sudan. PLoS One 2017;12:e0169524.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/