REFERENCES

1. Sari O, Balli M. From conventional to magnetic refrigerator technology. Int J Refrig 2014;37:8-15.

2. Müller K, Fauth F, Fischer S, Koch M, Furrer A, Lacorre P. Cooling by adiabatic pressure application in Pr1-xLaxNiO3. Appl Phys Lett 1998;73:1056-8.

3. Strässle T, Furrer A, Lacorre P, Müller K. A novel principle for cooling by adiabatic pressure application in rare-earth compounds. J Alloys Compd 2000;303-304:228-31.

4. Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 2010;9:478-81.

5. Mañosa L, González-Alonso D, Planes A, et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat Commun 2011;2:595.

6. Fujieda S, Fujita A, Fukamichi K. Strong pressure effect on the curie temperature of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy and La0.7Ce0.3(Fe0.88Si0.12)13Hy. Mater Trans 2009;50:483-6.

7. Yuce S, Barrio M, Emre B, et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl Phys Lett 2012;101:071906.

8. Wu RR, Bao LF, Hu FX, et al. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci Rep 2015;5:18027.

9. Stern-taulats E, Gràcia-condal A, Planes A, et al. Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51. Appl Phys Lett 2015;107:152409.

10. Stern-taulats E, Planes A, Lloveras P, et al. Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B 2014;89:214105.

11. Aznar A, Lloveras P, Romanini M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat Commun 2017;8:1851.

12. Bermúdez-García JM, Sánchez-Andújar M, Castro-García S, López-Beceiro J, Artiaga R, Señarís-Rodríguez MA. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat Commun 2017;8:15715.

13. Lloveras P, Stern-Taulats E, Barrio M, et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 2015;6:8801.

14. Mikhaleva E, Gorev M, Bondarev V, Bogdanov E, Flerov I. Comparative analysis of elastocaloric and barocaloric effects in single-crystal and ceramic ferroelectric (NH4)2SO4. Scripta Mater 2021;191:149-54.

15. Yu C, Huang J, Qi J, et al. Giant barocaloric effects in formamidinium iodide. APL Mater 2022;10:011109.

16. Salgado-beceiro J, Nonato A, Silva RX, et al. Near-room-temperature reversible giant barocaloric effects in [(CH3)4N]Mn[N3]3 hybrid perovskite. Mater Adv 2020;1:3167-70.

17. Ranke P, Alho B, Ribeiro P. First indirect experimental evidence and theoretical discussion of giant refrigeration capacity through the reversible pressure induced spin-crossover phase transition. J Alloys Compd 2018;749:556-60.

18. Szafrański M, Wei W, Wang Z, Li W, Katrusiak A. Research update: tricritical point and large caloric effect in a hybrid organic-inorganic perovskite. APL Mater 2018;6:100701.

19. Bom NM, Imamura W, Usuda EO, Paixão LS, Carvalho AMG. Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling. ACS Macro Lett 2018;7:31-6.

20. Miliante CM, Christmann AM, Usuda EO, et al. Unveiling the origin of the giant barocaloric effect in natural rubber. Macromolecules 2020;53:2606-15.

21. Sagotra AK, Chu D, Cazorla C. Room-temperature mechanocaloric effects in lithium-based superionic materials. Nat Commun 2018;9:3337.

22. Cazorla C, Errandonea D. Giant mechanocaloric effects in fluorite-structured superionic materials. Nano Lett 2016;16:3124-9.

23. Ma N, Reis MS. Barocaloric effect on graphene. Sci Rep 2017;7:13257.

24. Li B, Kawakita Y, Ohira-Kawamura S, et al. Colossal barocaloric effects in plastic crystals. Nature 2019;567:506-10.

25. Aznar A, Lloveras P, Barrio M, et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. J Mater Chem A 2020;8:639-47.

26. Lloveras P, Tamarit J. Advances and obstacles in pressure-driven solid-state cooling: a review of barocaloric materials. MRS Energy Sustain 2021:8;3-15.

27. Tao K, Song W, Lin J, et al. Giant reversible barocaloric effect with low hysteresis in antiperovskite PdNMn3 compound. Scripta Mater 2021;203:114049.

28. Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 2015;14:73-8.

29. Boldrin D, Mendive-tapia E, Zemen J, et al. Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys Rev X 2018;8:041035.

30. Dusek M, Petricek V. Towards the routine application of computing system Jana2000. Acta Crystallogr A Found Crystallogr 2005;61:c104-5.

31. Krén E, Kádár G, Pál L, Sólyom J, Szabó P, Tarnóczi T. Magnetic structures and exchange interactions in the Mn-Pt system. Phys Rev 1968;171:574-85.

32. Krén E, Kádár G, Pál L, Szabó P. Investigation of the first-order magnetic transformation in Mn3Pt. J Appl Phys 1967;38:1265-6.

33. Tomiyoshi S, Yasui H, Kaneko T, et al. Magnetic excitations in Mn3Pt at high energies by the TOF method. J Magn Magn Mater 1990;90-91:203-4.

34. Zuniga-Cespedes BE, Manna K, Noad HML, et al. Observation of an anomalous hall effect in single-crystal Mn3Pt. Mater Sci 2022;2209:05865.

35. An N, Tang M, Hu S, et al. Structure and strain tunings of topological anomalous hall effect in cubic noncollinear antiferromagnet Mn3Pt epitaxial films. Sci China Phys Mech Astron 2020;63:297511.

36. Yasui H, Kaneko T, Yoshida H, Abe S, Kamigaki K, Mori N. Pressure dependence of magnetic transition temperatures and lattice parameter in an antiferromagnetic ordered alloy Mn3Pt. J Phys Soc Jpn 1987;56:4532-9.

37. Yasui H, Ohashi M, Abe S, et al. Magnetic order-order transformation in Mn3Pt. J Magn Magn Mater 1992;104-107:927-8.

38. Ricodeau JA. Model of the antiferromagnetic-antiferromagnetic transition in Mn3Pt alloys. J Phys F Met Phys 1974;4:1285-303.

39. Boldrin D. Fantastic barocalorics and where to find them. Appl Phys Lett 2021;118:170502.

40. Ehrenreich H, Spaepen F. Solid state physics: advances in research and applications. Amsterdam Boston: Academic Press; 2006.

41. Hemberger J, von Nidda HA, Tsurkan V, Loidl A. Large magnetostriction and negative thermal expansion in the frustrated antiferromagnet ZnCr2Se4. Phys Rev Lett 2007;98:147203.

42. Broholm C, Aeppli G, Espinosa GP, Cooper AS. Antiferromagnetic fluctuations and short-range order in a Kagomé lattice. Phys Rev Lett 1990;65:3173-6.

43. Li B, Ren WJ, Zhang Q, et al. Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In. Appl Phys Lett 2009;95:172506.

44. Zhang K, Song R, Qi J, et al. Colossal barocaloric effect in carboranes as a performance tradeoff. Adv Funct Mater 2022;32:2112622.

45. Ren Q, Qi J, Yu D, et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nat Commun 2022;13:2293.

46. Zhang Z, Li K, Lin S, et al. Thermal batteries based on inverse barocaloric effects. Sci Adv 2023;9:eadd0374.

47. Lloveras P, Samanta T, Barrio M, et al. Giant reversible barocaloric response of MnNiSi)1-x(FeCoGe)x (x = 0.39, 0.40, 0.41). APL Mater 2019;7:061106.

48. Greca LG, Lehtonen J, Tardy BL, Guo J, Rojas OJ. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater Horiz 2018;5:408-15.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/