REFERENCES
1. Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017;544:460-4.
2. Liu G, Zhang GJ, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater 2013;12:344-50.
3. Liddicoat PV, Liao XZ, Zhao Y, et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 2010;1:63.
4. Nutor RK, Cao Q, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range. Sci Adv 2021;7:eabi4404.
5. He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science 2017;357:1029-32.
6. Kong H, Jiao Z, Lu J, Liu CT. Low-carbon advanced nanostructured steels: microstructure, mechanical properties, and applications. Sci China Mater 2021;64:1580-97.
7. Kürnsteiner P, Wilms MB, Weisheit A, Gault B, Jägle EA, Raabe D. High-strength damascus steel by additive manufacturing. Nature 2020;582:515-9.
8. Xiao B, Xu L, Cayron C, Xue J, Sha G, Logé R. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel. Acta Mater 2020;195:199-208.
9. Zhang Q, Zhu Y, Gao X, Wu Y, Hutchinson C. Training high-strength aluminum alloys to withstand fatigue. Nat Commun 2020;11:5198.
10. Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nat Commun 2019;10:5099.
11. Zhang T, Huang Z, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science 2021;374:478-82.
12. Zhang J, Liu Y, Sha G, et al. Designing against phase and property heterogeneities in additively manufactured titanium alloys. Nat Commun 2022;13:4660.
13. Suzuki A, Inui H, Pollock TM. L12-strengthened cobalt-base superalloys. Annu Rev Mater Res 2015;45:345-68.
14. Pollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. New co-based γ-γ′ high-temperature alloys. JOM 2010;62:58-63.
15. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science 2006;312:90-1.
16. Smith TM, Esser BD, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys. Nat Commun 2016;7:13434.
17. Ju J, Shen Z, Kang M, Zhang J, Wang J. On the preferential grain boundary oxidation of a Ni-Co-based superalloy. Corros Sci 2022;199:110203.
18. Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019;574:223-7.
19. Fan L, Yang T, Zhao Y, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nat Commun 2020;11:6240.
20. Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 2018;362:933-7.
21. Wei S, Kim SJ, Kang J, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater 2020;19:1175-81.
22. Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.
23. Feng R, Rao Y, Liu C, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nat Commun 2021;12:3588.
24. Chen S, Aitken ZH, Pattamatta S, et al. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat Commun 2021;12:4953.
25. Xiao B, Luan J, Zhao S, et al. Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion. Nat Commun 2022;13:4870.
26. Yang T, Zhao Y, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Mater 2020;189:47-59.
27. Li X, Yin J, Zhang J, et al. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review. J Mater Sci Technol 2022;122:20-32.
28. Ronchi MR. Hydrogen-induced transformations in metastable high entropy alloys. Available from: https://dspace.mit.edu/handle/1721.1/139329 [Last accessed on 16 Nov 2022].
29. Xu Y, Toda H, Shimizu K, et al. Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles. Acta Mater 2022;236:118110.
30. Chen YS, Haley D, Gerstl SS, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 2017;355:1196-9.
31. López Freixes M, Zhou X, Zhao H, et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat Commun 2022;13:4290.
32. Chung H, Huh J, Jung W. Intermediate temperature brittleness of Ni based superalloy Nimonic263. Mater Charact 2018;140:9-14.
33. Jiang L, Ye X, Cui C, et al. Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors. Mater Sci Eng A 2016;668:137-45.
34. Yin S, Cheng G, Chang TH, Richter G, Zhu Y, Gao H. Hydrogen embrittlement in metallic nanowires. Nat Commun 2019;10:2004.
35. Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater 2013;12:145-51.
36. Bechtle S, Kumar M, Somerday B, Launey M, Ritchie R. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 2009;57:4148-57.
37. Zheng L, Schmitz G, Meng Y, Chellali R, Schlesiger R. Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys. Crit Rev Solid State Mater Sci 2012;37:181-214.
38. Wang C, Cao QP, Wang XD, et al. Intermediate temperature brittleness in metallic glasses. Adv Mater 2017;29:1605537.
39. Cao B, Wei D, Zhang X, et al. Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: the role of heterogeneous strain distribution and environmentally assisted intergranular damage. Mater Today Phys 2022;24:100653.
40. Zheng L, Chellali R, Schlesiger R, et al. Intermediate temperature embrittlement in high-purity Ni and binary Ni(Bi) alloy. Scr Mater 2011;65:428-31.
41. Sun B, Lu W, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat Mater 2021;20:1629-34.
42. Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022;602:437-41.
43. Wang S, Martin ML, Sofronis P, Ohnuki S, Hashimoto N, Robertson IM. Hydrogen-induced intergranular failure of iron. Acta Mater 2014;69:275-82.
44. Koyama M, Tasan CC, Akiyama E, Tsuzaki K, Raabe D. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater 2014;70:174-87.
48. Pouillier E, Gourgues A, Tanguy D, Busso E. A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement. Int J Plast 2012;34:139-53.
49. Chen XH, Zhuang XQ, Mo JW, et al. Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron. Mater Res Lett 2022;10:278-86.
50. Zhao Y, Lee D, Seok M, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr Mater 2017;135:54-8.
51. Soundararajan CK, Luo H, Raabe D, Li Z. Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy. Corros Sci 2020;167:108510.
52. Luo H, Sohn SS, Lu W, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nat Commun 2020;11:3081.
53. Lee J, Lee J. The effect of lattice defects induced by cathodic hydrogen charging on the apparent diffusivity of hydrogen in pure iron. J Mater Sci 1987;22:3939-48.
54. Yin Y, Tan Q, Wang T, et al. Eutectic modification of Fe-enriched high-entropy alloys through minor addition of boron. J Mater Sci 2020;55:14571-87.
55. Yi J, Zhuang X, He J, He M, Liu W, Wang S. Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy. Corros Sci 2021;189:109628.
56. Li Q, Mo J, Ma S, et al. Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi-type high-entropy alloys. Acta Mater 2022;241:118410.
57. Li C, Liu X, Dong L, et al. Simultaneously improved mechanical strength and corrosion resistance of Mg-Li-Al alloy by solid solution treatment. Mater Lett 2021;301:130305.
58. Zhou L, Chen K, Chen S, Ding Y, Fan S. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment. J Alloys Compd 2021;850:156717.
59. Pan S, Yuan J, Linsley C, Liu J, Li X. Corrosion behavior of nano-treated AA7075 alloy with TiC and TiB2 nanoparticles. Corros Sci 2022;206:110479.
60. Ichii K, Koyama M, Tasan CC, et al. Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys. Scr Mater 2018;150:74-7.
61. Pu Z, Chen Y, Dai L. Strong resistance to hydrogen embrittlement of high-entropy alloy. Mater Sci Eng A 2018;736:156-66.
62. Luo H, Li Z, Raabe D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci Rep 2017;7:9892.
63. Luo H, Lu W, Fang X, Ponge D, Li Z, Raabe D. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Mater Today 2018;21:1003-9.
64. Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy. Int J Hydrog Energy 2019;44:17163-7.
65. Koyama M, Wang H, Verma VK, Tsuzaki K, Akiyama E. Effects of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys. Metall Mater Trans A 2020;51:5612-6.
66. Mohammadi A, Novelli M, Arita M, et al. Gradient-structured high-entropy alloy with improved combination of strength and hydrogen embrittlement resistance. Corros Sci 2022;200:110253.
67. Fu Z, Yang B, Gan K, et al. Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures. Corros Sci 2021;190:109695.
68. Zhou X, Tehranchi A, Curtin WA. Mechanism and prediction of hydrogen embrittlement in fcc stainless steels and high entropy alloys. Phys Rev Lett 2021;127:175501.
69. Xie Z, Wang Y, Lu C, Dai L. Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy. Mater Today Commun 2021;26:101902.
70. Zhao Y, Yang T, Han B, et al. Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy. Mater Res Lett 2019;7:152-8.
71. Yang T, Zhao Y, Liu W, Kai J, Liu C. L12-strengthened high-entropy alloys for advanced structural applications. J Mater Res 2018;33:2983-97.
72. Zhao Y, Yang T, Zhu J, et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr Mater 2018;148:51-5.
73. Hou J, Liu S, Cao B, et al. Designing nanoparticles-strengthened high-entropy alloys with simultaneously enhanced strength-ductility synergy at both room and elevated temperatures. Acta Mater 2022;238:118216.
74. Cao B, Kong H, Fan L, et al. Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement. Scr Mater 2021;194:113622.
75. Wu S, Yang T, Cao B, et al. Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries. Scr Mater 2021;204:114066.
76. Wang Z, Wu H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater Today 2022;54:83-9.
77. Xie D, Li S, Li M, et al. Hydrogenated vacancies lock dislocations in aluminium. Nat Commun 2016;7:13341.
78. Nag S, Curtin WA. Effect of solute-solute interactions on strengthening of random alloys from dilute to high entropy alloys. Acta Mater 2020;200:659-73.
79. Kamachali R, Wang L. Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys. Scr Mater 2022;206:114226.
80. Chen YS, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 2020;367:171-5.