REFERENCES

1. Liu G, Molokeev MS, Xia Z. Structural rigidity control toward Cr3+ -based broadband near-infrared luminescence with enhanced thermal stability. Chem Mater 2022;34:1376-84.

2. Li J, Cui D, Huang J, et al. Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew Chem Int Ed Engl 2019;58:12680-7.

3. Zhang L, Wang D, Yang K, et al. Mitochondria-targeted artificial “nano-rbcs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv Sci (Weinh) 2018;5:1800049.

4. Zou X, Wang X, Zhang H, et al. A highly efficient and suitable spectral profile Cr3+-doped garnet near-infrared emitting phosphor for regulating photomorphogenesis of plants. Chem Eng J 2022;428:132003.

5. Liu D, Li G, Dang P, et al. Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2 SbO6 by chemical unit cosubstitution: night-vision and near-infrared spectroscopy detection applications. Angew Chem Int Ed Engl 2021;60:14644-9.

6. Nguyen DT, Baek NR, Pham TD, Park KR. Presentation attack detection for iris recognition system using NIR camera sensor. Sensors (Basel) 2018;18:1315.

7. Rajendran V, Chang H, Liu R. Recent progress on broadband near-infrared phosphors-converted light emitting diodes for future miniature spectrometers. Opt Mater 2019;1:100011.

8. Zhang Y, Qiao J. Near-infrared emitting iridium complexes: molecular design, photophysical properties, and related applications. iScience 2021;24:102858.

9. Lukovic M, Lukovic V, Belca I, Kasalica B, Stanimirovic I, Vicic M. LED-based vis-NIR spectrally tunable light source - the optimization algorithm. J Eur Opt Soc -Rapid Publ 2016:12.

10. Liu H, Zhong H, Zheng F, et al. Near-infrared lead chalcogenide quantum dots: synthesis and applications in light emitting diodes*. Chin Phys B 2019;28:128504.

11. Liu G, Hu T, Molokeev MS, Xia Z. Li/Na substitution and Yb3+ co-doping enabling tunable near-infrared emission in LiIn2SbO6:Cr3+ phosphors for light-emitting diodes. iScience 2021;24:102250.

12. Qiao J, Zhou G, Zhou Y, Zhang Q, Xia Z. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat Commun 2019;10:5267.

13. Dai D, Wang Z, Xing Z, et al. Broad band emission near-infrared material Mg3Ga2GeO8:Cr3+: substitution of Ga-In, structural modification, luminescence property and application for high efficiency LED. J Alloys Compd 2019;806:926-38.

14. Berezovskaya I, Dotsenko V, Voloshinovskii A, Smola S. Near infrared emission of Eu2+ ions in Ca3Sc2Si3O12. Chem Phys Lett 2013;585:11-4.

15. Qiao J, Zhang S, Zhou X, Chen W, Gautier R, Xia Z. Near-infrared light-emitting diodes utilizing a Europium-activated calcium oxide phosphor with external quantum efficiency of up to 54.7%. Adv Mater 2022;34:e2201887.

16. Xiong PX, Li YY, Peng MY. Recent advances in super broad infrared luminescence bismuth-doped crystals. IScience 2020;23:101578.

17. Matuszewska C, Marciniak L. The influence of host material on NIR II and NIR III emitting Ni2+-based luminescent thermometers in ATiO3: Ni2+ (A = Sr, Ca, Mg, Ba) nanocrystals. J Lumin 2020;223:117221.

18. Du J, Poelman D. Near-infrared persistent luminescence in Mn4+ doped perovskite type solid solutions. Ceram Int 2019;45:8345-53.

19. Nie W, Yao L, Chen G, et al. A novel Cr3+-doped Lu2CaMg2Si3O12 garnet phosphor with broadband emission for near-infrared applications. Dalton Trans 2021;50:8446-56.

20. Nie W, Li Y, Zuo J, et al. Cr3+-activated Na3 X2 Li3 F12 (X = Al, Ga, or In) garnet phosphors with broadband NIR emission and high luminescence efficiency for potential biomedical application. J Mater Chem C 2021;9:15230-41.

21. You L, Tian R, Zhou T, Xie R. Broadband near-infrared phosphor BaMgAl10O17:Cr3+ realized by crystallographic site engineering. Chem Eng J 2021;417:129224.

22. Zeng H, Zhou T, Wang L, Xie R. Two-site occupation for exploring ultra-broadband near-infrared phosphor-double-perovskite La2MgZrO6:Cr3+. Chem Mater 2019;31:5245-53.

23. Yan W, Liu F, Lu YY, Wang XJ, Yin M, Pan Z. Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor. Opt Express 2010;18:20215-21.

24. Xu X, Shao Q, Yao L, Dong Y, Jiang J. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications. Chem Eng J 2020;383:123108.

25. Huang D, Zhu H, Deng Z, et al. A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes. J Mater Chem C 2021;9:164-72.

26. Lin Q, Wang Q, Liao M, et al. Trivalent chromium ions doped fluorides with both broad emission bandwidth and excellent luminescence thermal stability. ACS Appl Mater Interfaces 2021;13:18274-82.

27. Bindhu A, Naseemabeevi JI, Ganesanpotti S. Distortion and energy transfer assisted tunability in garnet phosphors. Crit Rev Solid State Mater Sci 2022;47:621-64.

28. Jia Z, Yuan C, Liu Y, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci Appl 2020;9:86.

29. Basore ET, Xiao W, Liu X, Wu J, Qiu J. Broadband near-infrared garnet phosphors with near-unity internal quantum efficiency. Adv Optical Mater 2020;8:2000296.

30. Mao N, Liu S, Song Z, Yu Y, Liu Q. A broadband near-infrared phosphor Ca3Y2Ge3O12:Cr3+ with garnet structure. J Alloys Comp 2021;863:158699.

31. Meng X, Zhang X, Shi X, et al. Designing a super broadband near infrared material Mg3Y2Ge3O12:Cr3+ using cation inversion for future light sources. RSC Adv 2020;10:19106-16.

32. Dumesso MU, Xiao W, Zheng G, et al. Efficient, stable, and ultra-broadband near-infrared garnet phosphors for miniaturized optical applications. Adv Opt Mater 2022;10:2200676.

33. Zhou JY, Zhuo Y, Du F, et al. Efficient and tunable luminescence in Ga2-xInxO3:Cr3+ for near-infrared imaging. ACS Appl Mater Interf 2021;13:31835-42.

34. Xia Z, Ma C, Molokeev MS, Liu Q, Rickert K, Poeppelmeier KR. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor. J Am Chem Soc 2015;137:12494-7.

35. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 1976;32:751-67.

36. Zhang L, Wang D, Hao Z, et al. Cr3+-Doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy. Adv Opt Mater 2019;7:1900185.

37. Tanabe Y, Sugano S. On the absorption spectra of complex ions II. J Phys Soc Jpn 1954:5;766-79.

38. Mao M, Zhou T, Zeng H, et al. Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3-xCaxAl5-xSixO12:Cr3+ (x = 0-2.0) garnet phosphors. J Mater Chem C 2020;8:1981-8.

39. Zhang S, Qiu B, Li Z, et al. Achieving high quantum efficiency independent on luminescence center through sub-lattice cage engineering. Chem Eng J 2021;426:130734.

40. Lian H, Li Y, Sharafudeen K, et al. Highly thermotolerant metal halide perovskite solids. Adv Mater 2020;32:e2002495.

41. Malysa B, Meijerink A, Jüstel T. Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La). J Lumin 2018;202:523-31.

42. Kayanuma Y, Noba K. On the line shape of phonon side-band in photo-absorption of localized centers. J Phys Soc Jpn 1999;68:1061-1061.

43. Tang F, Su Z, Ye H, et al. A set of manganese ion activated fluoride phosphors (A2BF6Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence. J Mater Chem C 2016;4:9561-8.

44. Kitzmann WR, Moll J, Heinze K. Spin-flip luminescence. Photochem Photobiol Sci 2022;21:1309-31.

45. Macfarlane P, Han T, Henderson B, Kaminskii A. Cr3+ luminescence in calcium and strontium gallogermanate. Opt Mater 1994;3:15-24.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/