REFERENCES
1. Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Materialia 2013;61:1648-61.
2. Harjo S, Tsuchida N, Abe J, Gong W. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction. Sci Rep 2017;7:15149.
3. Sohn SS, Song H, Jo MC, Song T, Kim HS, Lee S. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels. Sci Rep 2017;7:1255.
4. Ding L, Hilhorst A, Idrissi H, Jacques P. Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy. Acta Materialia 2022;234:118049.
5. Chandan AK, Kishore K, Hung PT, et al. Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion. Int J Plast 2022;150:103193.
6. Zhang Z, Jiang Z, Xie Y, Chan SLI, Liang J, Wang J. Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scripta Materialia 2022;207:114266.
7. Fu Y, Liu J, Shi J, Cao W, Dong H. Effects of cold rolling reduction on retained austenite fraction and mechanical properties of high-Si TRIP steel. J Iron Steel Res Int 2013;20:50-6.
8. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016;534:227-30.
9. Li Z, Tasan CC, Pradeep KG, Raabe D. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Materialia 2017;131:323-35.
10. Li Z, Körmann F, Grabowski B, Neugebauer J, Raabe D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Materialia 2017;136:262-70.
11. Lu W, Liebscher CH, Dehm G, Raabe D, Li Z. Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv Mater 2018;30:e1804727.
12. Gao X, Liu T, Zhang X, Fang H, Qin G, Chen R. Precipitation phase and twins strengthening behaviors of as-cast non-equiatomic CoCrFeNiMo high entropy alloys. J Alloys Comp 2022;918:165584.
13. Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 2009;324:349-52.
14. Ma L, Wang L, Nie Z, et al. Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Materialia 2017;128:12-21.
15. Moon J, Qi Y, Tabachnikova E, et al. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Mater Lett 2017;202:86-8.
16. Hou J, Li J, Lu W. Twin boundary-assisted precipitation of sigma phase in a high-entropy alloy. Mater Lett 2021;300:130198.
17. Heinz A, Neumann P. Crack initiation during high cycle fatigue of an austenitic steel. Acta Metallurgica Materialia 1990;38:1933-40.
18. García ADJ, Medrano AM, Rodríguez AS. Formation of hcp martensite during the isothermal aging of an fcc Co-27Cr-5Mo-0.05C orthopedic implant alloy. Metall Mat Trans A 1999;30:1177-84.
19. Hung CY, Shimokawa T, Bai Y, Tsuji N, Murayama M. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel. Sci Rep 2021;11:19298.
20. Zhu Q, Kong L, Lu H, et al. Revealing extreme twin-boundary shear deformability in metallic nanocrystals. Sci Adv 2021;7:eabe4758.
21. Wang J, Anderoglu O, Hirth JP, Misra A, Zhang X. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl Phys Lett 2009;95:021908.
22. Liu L, Wang J, Gong SK, Mao SX. High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys Rev Lett 2011;106:175504.
23. Li Q, Xue S, Wang J, et al. High-strength nanotwinned Al alloys with 9R phase. Adv Mater 2018;30:1704629.
24. Zhang Y, Li G, Yuan F, et al. Atomic scale observation of FCC twin, FCC→9R and 9R→12R’ transformations in cold-rolled Hafnium. Scripta Materialia 2022;207:114284.
25. Liebscher C, Radmilović V, Dahmen U, et al. A hierarchical microstructure due to chemical ordering in the bcc lattice: early stages of formation in a ferritic Fe-Al-Cr-Ni-Ti alloy. Acta Materialia 2015;92:220-32.
26. Lu W, Herbig M, Liebscher C, et al. Formation of eta carbide in ferrous martensite by room temperature aging. Acta Materialia 2018;158:297-312.
27. Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Materialia 2010;58:2262-70.
28. Zhu Q, Huang Q, Tian Y, et al. Hierarchical twinning governed by defective twin boundary in metallic materials. Sci Adv 2022;8:eabn8299.
29. Tschopp MA, Coleman SP, Mcdowell DL. Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr Mater Manuf Innov 2015;4:176-89.
30. Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun 2017;8:14390.
31. Lu L, Shen Y, Chen X, Qian L, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science 2004;304:422-6.