REFERENCES
1. Messing GL, Trolier-mckinstry S, Sabolsky EM, et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Materials Sciences 2004;29:45-96.
2. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19:999-1005.
3. Chang Y, Wu J, Liu Z, et al. Grain-oriented ferroelectric ceramics with single-crystal-like piezoelectric properties and low texture temperature. ACS Appl Mater Interfaces 2020;12:38415-24.
4. Rehrig PW, Messing GL, Trolier-mckinstry S. Templated grain growth of barium titanate single crystals. J Am Ceram Soc 2000;83:2654-60.
5. Chai G, Wang S, Xia Z, et al. PbI 2 platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition. Semicond Sci Technol 2017;32:074003.
6. Pan ZB, Liu BH, Zhai JW, et al. NaNbO3 two-dimensional platelets induced highly energy strorage density in trilayered architecture composites. Nano Energy 2017;40:587-95.
7. Wang L, Gao F, Xu J, et al. Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos Sci Technol 2018;158:112-20.
8. Koka A, Zhou Z, Tang H, Sodano HA. Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 2014;25:375603.
9. Zhou J, Xie L, Song XF, et al. High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets. J Mater Chem C 2020;8:12632-7.
10. Kržmanc MM, Jančar B, Uršič H, Tramšek M, Suvorov D. Tailoring the shape, size, crystal structure, and preferential growth orientation of BaTiO3 plates synthesized through a topochemical conversion process. Crystal Growth & Design 2017;17:3210-20.
11. Ranmohotti KG, Josepha E, Choi J, Zhang J, Wiley JB. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv Mater 2011;23:442-60.
12. Li L, Deng J, Chen J, Xing X. Topochemical molten salt synthesis for functional perovskite compounds. Chem Sci 2016;7:855-65.
13. Poterala SF, Chang Y, Clark T, Meyer RJ, Messing GL. Mechanistic interpretation of the Aurivillius to perovskite topochemical microcrystal conversion process. Chem Mater 2010;22:2061-8.
14. Fu J, Hou Y, Zheng M, Zhu M. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor. Crystal Growth & Design 2019;19:1198-205.
15. Zheng T, Wu J, Xiao D, Zhu J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 2018;98:552-624.
16. Zhang S, Malič B, Li J, Rödel J. Lead-free ferroelectric materials: prospective applications. J Mater Res 2021;36:985-95.
17. Kang W, Koh J. (1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications. J Eur Ceram Soc 2015;35:2057-64.
18. Zhao J, Zhang N, Ren W, et al. Polar domain structural evolution under electric field and temperature in the (Bi0.5Na0.5)TiO3-0.06BaTiO3 piezoceramics. J Am Ceram Soc 2019;102:437-47.
19. Das Adhikary G, Khatua DK, Senyshyn A, Ranjan R. Random lattice strain and its relaxation towards the morphotropic phase boundary of Na0.5Bi0.5TiO3-based piezoelectrics: impact on the structural and ferroelectric properties. Phys Rev B 2019;99:174112.
20. Kimura T, Takahashi T, Tani T, Saito Y. Crystallographic texture development in bismuth sodium titanate prepared by reactive-templated grain growth method. J Am Ceram Soc 2004;87:1424-9.
21. Lee D, Jeong S, Park E, Song J. Characteristic of grain oriented (Bi0.5Na0.5)TiO3-BaTiO3 ceramics. J Electroceram 2006;17:505-8.
22. Su S, Zuo R. Fabrication and electrical properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 textured ceramics by RTGG method using micrometer sized BaTiO3 plate-like templates. J Alloys Compd 2012;525:133-6.
23. Maurya D, Zhou Y, Yan Y, Priya S. Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response. J Mater Chem C 2013;1:2102.
24. Ma S, Zhang Y, Liu Z, et al. Preparation and enhanced electric-field-induced strain of textured 91BNT-6BT-3KNN lead-free piezoceramics by TGG method. J Mater Sci: Mater Electron 2016;27:3076-81.
25. Bai W, Wang L, Zheng P, Wen F, Zhai J, Ji Z. Pairing high piezoelectric properties and enhanced thermal stability in grain-oriented BNT-based lead-free piezoceramics. Ceramics International 2018;44:11402-9.
26. Zhao W, Zhou H, Yan Y, Liu D. Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 from Aurivillius precursor. J American Ceramic Society 2008;91:1322-5.
27. Yokoi A, Sugishita J. Ferroelectric properties of mixed bismuth layer-structured Na0.5Bi8.5Ti7O27 ceramic and SrxNa0.5-x/2Bi8.5-x/2Ti7O27 solid solutions. J Alloys Compd 2008;452:467-72.
28. Chen M, Xu Q, Kim BH, et al. Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics. J Eur Ceram Soc 2008;28:843-9.
29. Prado-espinosa A, Camargo J, del Campo A, Rubio-marcos F, Castro M, Ramajo L. Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead free piezoceramics: Confocal Raman Microscopy. J Alloys Compd 2018;739:799-805.
30. Rahaman MN. .
31. Jiang X, Jiang X, Chen C, et al. Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. J Am Ceram Soc 2016;99:1332-9.
32. Zhao J, Zhang N, Quan Y, et al. Evolution of mesoscopic domain structure and macroscopic properties in lead-free Bi0.5Na0.5TiO3-BaTiO3 ferroelectric ceramics. J Appl Phys 2021;129:084103.
33. Badapanda T, Sahoo S, Nayak P. Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf Ser:Mater Sci Eng 2017;178:012032.
34. Parija B, Badapanda T, Panigrahi S, Sinha TP. Ferroelectric and piezoelectric properties of (1-x) (Bi0.5Na0.5)TiO3-xBaTiO3 ceramics. J Mater Sci:Mater Electron 2013;24:402-10.
35. Flores-ruiz F, Gervacio-Arciniega J, Murillo-Bracamontes E, Cruz M, Yáñez-Limón J, Siqueiros J. An alternative scheme to measure single-point hysteresis loops using piezoresponse force microscopy. Measurement 2017;108:143-51.
36. Balke N, Jesse S, Li Q, et al. Current and surface charge modified hysteresis loops in ferroelectric thin films. J Appl Phys 2015;118:072013.
37. Miller A, Carchman R, Long R, Denslow SA. La Crosse viral infection in hospitalized pediatric patients in Western North Carolina. Hosp Pediatr 2012;2:235-42.