REFERENCES
1. Mary TA, Evans JSO, Vogt T, Sleight AW. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996;272:90-2.
2. Chen J, Hu L, Deng J, Xing X. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev 2015;44:3522-67.
3. Chapman KW, Chupas PJ, Kepert CJ. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis. J Am Chem Soc 2005;127:15630-6.
5. Blackman M. On the thermal expansion of solids. Proc Phys Soc 1957;70:827-32.
6. Kittel C. Introduction to solid state physics. 8th ed. Wiley; 2004.
7. Feynman RP. Statistical Mechanics: a set of lectures. Reading, MA: Benjamin; 1972.
8. Kleinert H. Path Integrals in Quantum Mechanics, Statistics and Polymer Physics and Financial Markets. Singapore: World Scientific; 1995.
9. Cuccoli A, Macchi A, Neumann M, Tognetti V V, Vaia R. Quantum thermodynamics of solids by means of an effective potential. Phys Rev B Condens Matter 1992;45:2088-96.
10. Cuccoli A, Giachetti R, Tognetti V, Vaia R, Verrucchi P. The effective potential and effective Hamiltonian in quantum statistical mechanics. J Phys Condens Matter 1995;7:7891-938.
11. Sayers DE, Stern EA, Lytle FW. New technique for investigating noncrystalline structures: Fourier analysis of the extended X-Ray - absorption fine structure. Phys Rev Lett 1971;27:1204-7.
12. Bunker G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge: Cambridge University Press; 2010.
13. Eisenberger P, Brown GS. The study of disordered systems by EXAFS: Limitations. Solid State Commun 1979;29:481-4.
14. Bunker G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instrum Method Phys Res 1983;207:437-44.
15. Yokoyama T, Satsukawa T, Ohta T. Anharmonic interatomic potentials of metals and metal bromides determined by EXAFS. Jpn J Appl Phys 1989;28:1905-8.
16. Frenkel AI, Rehr JJ. Thermal expansion and x-ray-absorption fine-structure cumulants. Phys Rev B Condens Matter 1993;48:585-8.
17. Yokoyama T. Path-integral effective-potential theory for EXAFS cumulants compared with the second-order perturbation. J Synchrotron Radiat 1999;6:323-5.
18. Yokoyama T. Path-integral approach to anharmonic vibration of solids and solid interfaces. J Synchrotron Radiat 2001;8:87-91.
19. Yokoyama T, Kobayashi K, Ohta T, Ugawa A. Anharmonic interatomic potentials of diatomic and linear triatomic molecules studied by extended x-ray-absorption fine structure. Phys Rev B Condens Matter 1996;53:6111-22.
20. Yokoyama T, Yonamoto Y, Ohta T, Ugawa A. Anharmonic interatomic potentials of octahedral Pt-halogen complexes studied by extended x-ray-absorption fine structure. Phys Rev B Condens Matter 1996;54:6921-8.
21. Yokoyama T, Yonamoto Y, Ohta T. Anharmonicity of the bending and stretching vibrations observed in extended X-ray absorption fine structure of tetrahedral molecules. J Phys Soc Jpn 1996;65:3901-8.
22. Miyanaga T, Fujikawa T. Quantum statistical approach to Debye-Waller factor in EXAFS, EELS and ARXPS. II. Application to one-dimensional models. J Phys Soc Jpn 1994;63:1036-52.
23. Fujikawa T, Miyanaga T, Suzuki T. Quantum statistical approach to Debye-Waller factors in EXAFS, EELS and ARXPS. V. Real space approach to one-dimensional systems. J Phys Soc Jpn 1997;66:2897-906.
24. Yokoyama T. Path-integral effective-potential method applied to extended x-ray-absorption fine-structure cumulants. Phys Rev B 1998;57:3423-32.
25. Yokoyama T. Fluctuating paths and fields. In: Janke W, Pelster A, Bachmann M, Schmidt HJ, editors. Path-integral and perturbation methods for Debye-Waller factors observed by extended x-ray-absorption fine structure spectroscopy. Singapore: World Scientific; 2001. pp. 337-46.
27. Beni G, Platzman PM. Temperature and polarization dependence of extended x-ray absorption fine-structure spectra. Phys Rev B 1976;14:1514-8.
28. Daw MS, Baskes MI. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 1984;29:6443-53.
29. Foiles SM. Application of the embedded-atom method to liquid transition metals. Phys Rev B Condens Matter 1985;32:3409-15.
30. Foiles SM. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B Condens Matter 1985;32:7685-93.
31. Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B Condens Matter 1986;33:7983-91.
32. Jacobsen KW, Norskov JK, Puska MJ. Interatomic interactions in the effective-medium theory. Phys Rev B Condens Matter 1987;35:7423-42.
33. Ercolessi F, Parrinello M, Tosatti E. Simulation of gold in the glue model. Philosophical Magazine A 1988;58:213-26.
34. Yokoyama T, Koide A, Uemura Y. Local thermal expansions and lattice strains in Elinvar and stainless steel alloys. Phys Rev Materials 2018;2.
38. Matsui M, Chikazumi S. Analysis of anomalous thermal expansion coefficient of Fe-Ni Invar alloys. J Phys Soc Jpn 1978;45:458-65.
39. van Schilfgaarde M, Abrikosov IA, Johansson B. Origin of the Invar effect in iron-nickel alloys. Nature 1999;400:46-9.
40. Rancourt DG, Dang M. Relation between anomalous magnetovolume behavior and magnetic frustration in Invar alloys. Phys Rev B Condens Matter 1996;54:12225-31.
41. Wesselinowa JM, Ivanov IP, Entel P. Localized-magnetic-moment theory of Fe-Ni Invar. Phys Rev B 1997;55:14311-7.
42. Meyer R, Entel P. Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations. Phys Rev B 1998;57:5140-7.
43. Lagarec K, Rancourt DG. Fe3Ni-type chemical order in Fe65Ni35 films grown by evaporation: implications regarding the Invar problem. Phys Rev B 2000;62:978-85.
44. Gruner M, Meyer R, Entel P. Monte Carlo simulations of high-moment - low-moment transitions in Invar alloys. Eur Phys J B 1998;2:107-19.
45. Yokoyama T, Eguchi K. Anharmonicity and quantum effects in thermal expansion of an Invar alloy. Phys Rev Lett 2011;107:065901.
46. Touloukian YS, Kirby RK, Taylor RE, Desai PD. Thermophysical Properties of Matter. Vol. 12: Metallic Elements and Alloys, Vol. 13: Nonmetallic Solids. New York: Plenum; 1975.
47. Yokoyama T, Chaveanghong S. Anharmonicity in elastic constants and extended x-ray-absorption fine structure cumulants. Phys Rev Materials 2019;3.
48. Yokoyama T, Ohta T, Sato H. Thermal expansion and anharmonicity of solid Kr studied by extended x-ray-absorption fine structure. Phys Rev B 1997;55:11320-9.
49. Yokoyama T, Eguchi K. Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys. Phys Rev Lett 2013;110:075901.
50. Song Y, Sun Q, Yokoyama T, et al. Transforming thermal expansion from positive to negative: the case of cubic magnetic compounds of (Zr,Nb)Fe2. J Phys Chem Lett 2020;11:1954-61.
51. Ishimatsu N, Iwasaki S, Kousa M, et al. Elongation of Fe-Fe atomic pairs in the Invar alloy Fe65Ni35. Phys Rev B 2021;103.
52. Biernacki S, Scheffler M. Negative thermal expansion of diamond and zinc-blende semiconductors. Phys Rev Lett 1989;63:290-3.
53. Dalba G, Fornasini P, Grisenti R, Purans J. Sensitivity of extended x-ray-absorption fine structure to thermal expansion. Phys Rev Lett 1999;82:4240-3.
54. Vaccari M, Grisenti R, Fornasini P, Rocca F, Sanson A. Negative thermal expansion in CuCl: An extended x-ray absorption fine structure study. Phys Rev B 2007;75.
55. Abd el All N, Dalba G, Diop D, et al. Negative thermal expansion in crystals with the zincblende structure: an EXAFS study of CdTe. J Phys Condens Matter 2012;24:115403.
56. Abd El All N, Thiodjio Sendja B, Grisenti R, et al. Accuracy evaluation in temperature-dependent EXAFS measurements of CdTe. J Synchrotron Radiat 2013;20:603-13.
57. Fornasini P, Grisenti R. On EXAFS Debye-Waller factor and recent advances. J Synchrotron Radiat 2015;22:1242-57.
58. Pettifor DG, Oleinik II II. Bounded analytic bond-order potentials for sigma and pi bonds. Phys Rev Lett 2000;84:4124-7.
59. Pettifor DG, Oleinik II. Analytic bond-order potential for open and close-packed phases. Phys Rev B 2002;65.