REFERENCES
1. Yang, L.; Kong, X.; Li, F.; et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72-108.
2. Palneedi, H.; Peddigari, M.; Hwang, G.; Jeong, D.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665.
3. Sun, Z.; Wang, Z.; Tian, Y.; et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv. Elect. Mater. 2020, 6, 1900698.
4. Luo, S.; Yu, J.; Yu, S.; et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy. Mater. 2019, 9, 1803204.
5. Hao, Y.; Wang, X.; Bi, K.; et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano. Energy. 2017, 31, 49-56.
6. Zhang, R.; Li, L.; Long, S.; et al. Linear and ferroelectric effects of BaTiO3 particle size on the energy storage performance of composite films with different polymer matrices. Ceram. Int. 2021, 47, 22155-63.
7. Li, H.; Liu, F.; Fan, B.; Ai, D.; Peng, Z.; Wang, Q. Nanostructured ferroelectric-polymer composites for capacitive energy storage. Small. Methods. 2018, 2, 1700399.
8. Guo, M.; Jiang, J.; Shen, Z.; Lin, Y.; Nan, C.; Shen, Y. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today. 2019, 29, 49-67.
9. Sun, Y.; Zhang, L.; Huang, Q.; et al. Ultrahigh energy storage density in glassy ferroelectric thin films under low electric field. Adv. Sci. 2022, 9, e2203926.
10. Peddigari, M.; Wang, B.; Wang, R.; et al. Giant energy density via mechanically tailored relaxor ferroelectric behavior of PZT thick film. Adv. Mater. 2023, 35, 2302554.
11. Zhu, M.; Huang, X.; Yang, K.; et al. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. ACS. Appl. Mater. Interfaces. 2014, 6, 19644-54.
12. Wu, L.; Wang, X.; Li, L.; Randall, C. Enhanced energy density in core–shell ferroelectric ceramics: modeling and practical conclusions. J. Am. Ceram. Soc. 2016, 99, 930-7.
13. Yang, F.; Zhao, H.; Zhang, C.; et al. Improved energy storage property of ferroelectric polymer-based sandwiched composites interlayered with graphene oxide @ SiO2 core–shell nanoplatelets. J. Mater. Sci. 2022, 57, 11824-38.
14. Feng, M.; Feng, Y.; Zhang, T.; et al. Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 2021, 8, 2102221.
15. Wang, G.; Lu, Z.; Li, Y.; et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 2021, 121, 6124-72.
16. Sturge, K. M.; Hoppis, N.; Bussio, A. M.; et al. Dynamics of high-speed electrical tree growth in electron-irradiated polymethyl methacrylate. Science 2024, 385, 300-4.
17. Shu, L.; Shi, X.; Zhang, X.; et al. Partitioning polar-slush strategy in relaxors leads to large energy-storage capability. Science 2024, 385, 204-9.
18. Qian, J.; Yu, Z.; Ge, G.; et al. Topological vortex domain engineering for high dielectric energy storage performance. Adv. Energy. Mater. 2024, 14, 2303409.
19. Liu, H.; Zhou, Z.; Qiu, Y.; et al. An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. Mater. Horiz. 2020, 7, 1912-8.
20. Wu, L.; Cai, Z.; Zhu, C.; Feng, P.; Li, L.; Wang, X. Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: Phase-field simulation and experimental realization. Appl. Phys. Lett. 2020, 117, 212902.
21. Bi, K.; Bi, M.; Hao, Y.; et al. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano. Energy. 2018, 51, 513-23.
22. Chen, B.; Zhu, W.; Wang, T.; et al. Ultrahigh energy storage capacitors based on freestanding single-crystalline antiferroelectric membrane/PVDF composites. Adv. Funct. Mater. 2023, 33, 2302683.
23. Sun, J.; Yang, C.; Song, J.; Zhou, Y.; Yao, Q.; Sun, X. The microstructure, ferroelectric and dielectric behaviors of
24. Yang, B. B.; Guo, M. Y.; Song, D. P.; et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 2017, 111, 183903.
25. Tong, S.; Ma, B.; Narayanan, M.; et al. Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS. Appl. Mater. Interfaces. 2013, 5, 1474-80.
26. Pan, H.; Zeng, Y.; Shen, Y.; et al. BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A. 2017, 5, 5920-6.
27. Pan, H.; Li, F.; Liu, Y.; et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578-82.
28. Pan, H.; Lan, S.; Xu, S.; et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021, 374, 100-4.
29. Lee, H. J.; Won, S. S.; Cho, K. H.; et al. Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films. Appl. Phys. Lett. 2018, 112, 092901.
30. Hao, X.; Wang, Y.; Yang, J.; An, S.; Xu, J. High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films. J. Appl. Phys. 2012, 112, 114111.
31. Lin, Z.; Chen, Y.; Liu, Z.; Wang, G.; Rémiens, D.; Dong, X. Large energy storage density, low energy loss and highly stable
32. Ali, F.; Liu, X.; Zhou, D.; et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 2017, 122, 144105.
33. Acharya, M.; Banyas, E.; Ramesh, M.; et al. Exploring the Pb1-xSrxHfO3 system and potential for high capacitive energy storage density and efficiency. Adv. Mater. 2022, 34, 2105967.
34. Yang, B.; Liu, Y.; Jiang, R. J.; et al. Enhanced energy storage in antiferroelectrics via antipolar frustration. Nature 2025, 637, 1104-10.
35. Cheng, H.; Ouyang, J.; Zhang, Y. X.; et al. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat. Commun. 2017, 8, 1999.
36. Wang, J.; Shi, S.; Chen, L.; Li, Y.; Zhang, T. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta. Mater. 2004, 52, 749-64.
37. Gao, R.; Shi, X.; Wang, J.; Zhang, G.; Huang, H. Designed giant room-temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase–field simulations. Adv. Funct. Mater. 2021, 31, 2104393.
38. Wang, J.; Ma, X.; Li, Q.; Britson, J.; Chen, L. Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta. Mater. 2013, 61, 7591-603.
39. Choudhury, S.; Li, Y.; Krilliii, C.; Chen, L. Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta. Mater. 2005, 53, 5313-21.
40. Xu, B. X.; Schrade, D.; Gross, D.; Mueller, R. Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable. Int. J. Fract. 2010, 166, 163-72.
41. Huang, S.; Duan, Z.; Chen, J.; et al. Phase-field modeling for energy storage optimization in ferroelectric ceramics capacitors during heat treatment process. Ceram. Int. 2024, 50, 52020-6.
42. Shen, Z. H.; Wang, J. J.; Lin, Y.; Nan, C. W.; Chen, L. Q.; Shen, Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 2018, 30, 1704380.
43. Shen, Z.; Bao, Z.; Cheng, X.; et al. Designing polymer nanocomposites with high energy density using machine learning. npj. Comput. Mater. 2021, 7, 578.
44. Shen, Z.; Wang, J.; Jiang, J.; et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy. Mater. 2018, 8, 1800509.
45. Li, F.; Zhang, S.; Yang, T.; et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 2016, 7, 13807.
46. Li, F.; Zhang, S.; Xu, Z.; Chen, L. The contributions of polar nanoregions to the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crystals. Adv. Funct. Mater. 2017, 27, 1700310.
47. Shi, X.; Wang, J.; Xu, J.; Cheng, X.; Huang, H. Quantitative investigation of polar nanoregion size effects in relaxor ferroelectrics. Acta. Mater. 2022, 237, 118147.
48. Glinchuk, M. D.; Farhi, R. A random field theory based model for ferroelectric relaxors. J. Phys. Condens. Matter. 1996, 8, 6985.
49. Hong, Z.; Ke, X.; Wang, D.; Yang, S.; Ren, X.; Wang, Y. Role of point defects in the formation of relaxor ferroelectrics. Acta. Mater. 2022, 225, 117558.
50. Wang, S.; Yi, M.; Xu, B. A phase-field model of relaxor ferroelectrics based on random field theory. Int. J. Solids. Struct. 2016, 83, 142-53.
51. Song, Y.; Shi, X.; Wang, J.; Huang, H. Predicting dielectric properties of ferroelectric materials with point defects by a phase-field model. ACS. Appl. Electron. Mater. 2024, 6, 3726-33.
52. Song, Y.; Xu, K.; Wang, J.; Huang, H. Thickness-dependent dielectric properties in doped relaxor films by the phase-field model. ACS. Appl. Electron. Mater. 2024, 6, 6477-83.
53. Xu, K.; Tang, S.; Guo, C.; Song, Y.; Huang, H. Antiferroelectric domain modulation enhancing energy storage performance by phase-field simulations. J. Materiomics. 2025, 11, 100901.
54. Lin, B.; Ong, K. P.; Yang, T.; et al. Ultrahigh electromechanical response from competing ferroic orders. Nature 2024, 633, 798-803.
55. Xue, F.; Liang, L.; Gu, Y.; Takeuchi, I.; Kalinin, S. V.; Chen, L. Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system. Appl. Phys. Lett. 2015, 106, 012903.
56. Xu, K.; Shi, X.; Shao, C.; Dong, S.; Huang, H. Design of polar boundaries enhancing negative electrocaloric performance by antiferroelectric phase-field simulations. npj. Comput. Mater. 2024, 10, 1334.
57. Xu, K.; Shi, X.; Dong, S.; Wang, J.; Huang, H. Antiferroelectric phase diagram enhancing energy-storage performance by phase-field simulations. ACS. Appl. Mater. Interfaces. 2022, 14, 25770-80.
58. Li, Q.; Liu, F.; Yang, T.; et al. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 9995-10000.
59. Shen, Z.; Wang, J.; Zhang, X.; et al. Space charge effects on the dielectric response of polymer nanocomposites. Appl. Phys. Lett. 2017, 111, 092901.
60. Zou, K.; Shao, C.; Bai, P.; et al. Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers. Nano. Lett. 2022, 22, 6560-6.
61. Bao, Z.; Hou, C.; Shen, Z.; et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites. Adv. Mater. 2020, 32, 1907227.
62. Li, Z.; Shen, Z.; Yang, X.; et al. Ultrahigh charge-discharge efficiency and enhanced energy density of the sandwiched polymer nanocomposites with poly(methyl methacrylate) layer. Compos. Sci. Technol. 2021, 202, 108591.
63. Qian, J.; Peng, R.; Shen, Z.; et al. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Adv. Mater. 2019, 31, 1801949.
64. Cai, Z.; Wang, X.; Li, L.; Hong, W. Electrical treeing: a phase-field model. Extreme. Mech. Lett. 2019, 28, 87-95.
65. Cai, Z.; Wang, X.; Luo, B.; Hong, W.; Wu, L.; Li, L. Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers. Compos. Sci. Technol. 2017, 151, 109-14.
66. Shen, Z.; Shen, Y.; Cheng, X.; Liu, H.; Chen, L.; Nan, C. High-throughput data-driven interface design of high-energy-density polymer nanocomposites. J. Materiomics. 2020, 6, 573-81.
67. Wang, Z.; Feng, Z.; Tang, H.; et al. Effects of nanofibers orientation and aspect ratio on dielectric properties of nanocomposites: a phase-field simulation. ACS. Appl. Mater. Interfaces. 2022, 14, 42513-21.
68. Dong, X.; Hu, T.; Wu, X.; Yin, J.; Fu, Z.; Wu, J. A novel lead-free relaxor with endotaxial nanostructures for capacitive energy storage. SusMat 2024, 4, 116-25.
69. Wang, T.; Shi, X.; Peng, R.; et al. Giant energy storage of flexible composites by embedding superparaelectric single-crystal membranes. Nano. Energy. 2023, 113, 108511.
70. Cai, Z.; Zhu, C.; Wang, H.; et al. Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering. J. Mater. Chem. A. 2019, 7, 17283-91.
71. Guo, Y.; Zhao, W.; Li, D.; et al. Ultra-high capacitive energy storage density at 150 °C achieved in polyetherimide composite films by filler and structure design. Adv. Mater. 2025, 37, e2415652.
72. Jiang, J.; Shen, Z.; Cai, X.; et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy. Mater. 2019, 9, 1803411.
73. Zhao, P.; Cai, Z.; Chen, L.; et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy. Environ. Sci. 2020, 13, 4882-90.
74. Khondabi, M.; Ahmadvand, H.; Javanbakht, M. Revisiting the dielectric breakdown in a polycrystalline ferroelectric: a phase-field simulation study. Adv. Theory. Simul. 2023, 6, 2200314.
75. Shen, Y.; Wu, L.; Zhao, J.; et al. Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering. Chem. Eng. J. 2022, 439, 135762.
76. Li, H.; Pan, Z.; Chen, X.; et al. Stable relaxor ferroelectric phase of NaNbO3-based ceramic with superb energy storage performances. Mater. Today. Phys. 2023, 38, 101208.
77. Huang, J.; Deng, L.; Zhang, Y.; et al. Realizing ultrahigh energy storage density in (Bi0.5Na0.5)0.94Ba0.06TiO3-based ceramics via manipulating the domain configuration and grain boundary density. ACS. Appl. Mater. Interfaces. 2024, 16, 57334-45.
78. Ye, H.; Yang, F.; Pan, Z.; et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta. Mater. 2021, 203, 116484.
79. Wang, X.; Huan, Y.; Zhao, P.; et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: paving the way for ultrahigh energy storage capacitors. J. Materiomics. 2021, 7, 780-9.
80. Yang, B.; Zhang, Y.; Pan, H.; et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 2022, 21, 1074-80.
81. Cai, Z.; Wang, X.; Hong, W.; Luo, B.; Zhao, Q.; Li, L. Grain-size–dependent dielectric properties in nanograin ferroelectrics. J. Am. Ceram. Soc. 2018, 101, 5487-96.
82. Wei, K.; Duan, J.; Li, G.; Yu, H.; Qi, H.; Li, H. Enhancing comprehensive energy storage properties in Pb-free relaxor AFE/FE system via heterogeneous structure tuning and defect engineering. Acta. Mater. 2024, 278, 120278.
83. Li, Y.; Chang, Z.; Zhang, M.; et al. Realizing outstanding energy storage performance in KBT-based lead-free ceramics via suppressing space charge accumulation. Small 2024, 20, e2401229.
84. Cai, Z.; Feng, P.; Zhu, C.; Wang, X. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores. J. Eur. Ceram. Soc. 2021, 41, 2533-8.
85. Yang, L.; Kong, X.; Li, Q.; Lin, Y. H.; Zhang, S.; Nan, C. W. Excellent energy storage properties achieved in sodium niobate-based relaxor ceramics through doping tantalum. ACS. Appl. Mater. Interfaces. 2022, 14, 32218-26.
86. Yang, L.; Kong, X.; Lin, Y.; Zhang, S.; Nan, C. Improved energy storage performance of NaNbO3-based antiferroelectrics by tuning polarizability and defect engineering. J. Am. Ceram. Soc. 2024, 107, 1848-58.
87. Yang, L.; Kong, X.; Cheng, Z.; Zhang, S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A. 2019, 7, 8573-80.
88. Westphal, V.; Kleemann, W.; Glinchuk, M. D. Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 1992, 68, 847.
89. Chai, Q.; Liu, Z.; Deng, Z.; et al. Excellent energy storage properties in lead-free ferroelectric ceramics via heterogeneous structure design. Nat. Commun. 2025, 16, 1633.
90. Wang, W.; Zhang, L.; Shi, W.; et al. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS. Appl. Mater. Interfaces. 2023, 15, 6990-7001.
91. Li, D.; Zhou, D.; Wang, D.; et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design. Small 2023, 19, 2206958.
92. Li, D.; Xu, D.; Zhao, W.; et al. A high-temperature performing and near-zero energy loss lead-free ceramic capacitor. Energy. Environ. Sci. 2023, 16, 4511-21.
93. Li, D.; Zhou, D.; Wang, D.; Zhao, W.; Guo, Y.; Shi, Z. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 2022, 32, 2111776.
94. Zhao, W.; Xu, D.; Li, D.; et al. Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics. Nat. Commun. 2023, 14, 5725.
95. Zhang, M.; Lan, S.; Yang, B. B.; et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 2024, 384, 185-9.
96. Huang, W.; Chen, J.; Zhang, R.; et al. Effect of deformation modes on continuous dynamic recrystallization of extruded AZ31 Mg alloy. J. Alloys. Compd. 2022, 897, 163086.
97. Yang, B.; Liu, Y.; Gong, C.; et al. Design of high-entropy relaxor ferroelectrics for comprehensive energy storage enhancement. Adv. Funct. Mater. 2024, 34, 2409344.
98. Li, W.; Shen, Z. H.; Liu, R. L.; et al. Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage. Nat. Commun. 2024, 15, 4940.
99. Yang, B.; Zhang, Q.; Huang, H.; et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy. 2023, 8, 956-64.
100. Peng, H.; Wu, T.; Liu, Z.; et al. High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage. Nat. Commun. 2024, 15, 5232.
101. Sun, Z.; Zhang, J.; Luo, H.; et al. Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition. J. Am. Chem. Soc. 2023, 145, 6194-202.
102. Luo, J.; Zhu, H.; Zheng, T.; Qian, H.; Liu, Y.; Lyu, Y. A slush-like polar structure for high energy storage performance in a Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectric thin film. J. Mater. Chem. A. 2022, 10, 7357-65.
103. Wang, H.; Wu, S.; Fu, B.; et al. Hierarchically polar structures induced superb energy storage properties for relaxor Bi0.5Na0.5TiO3-based ceramics. Chem. Eng. J. 2023, 471, 144446.
104. Tao, H.; Wu, H.; Liu, Y.; et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 2019, 141, 13987-94.
105. Yuan, R.; Kumar, A.; Zhuang, S.; et al. Machine learning-enabled superior energy storage in ferroelectric films with a slush-like polar state. Nano. Lett. 2023, 23, 4807-14.
106. Liu, Z.; Yang, B.; Cao, W.; Fohtung, E.; Lookman, T. Enhanced energy storage with polar vortices in ferroelectric nanocomposites. Phys. Rev. Appl. 2017, 8, 034014.
107. Hou, X.; Li, X.; Zhang, J.; Bag, S. P.; Li, H.; Wang, J. Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics. Phys. Rev. Appl. 2021, 15, 054019.
108. Wang, Z.; Bin, C.; Zheng, S.; Wang, J. Effect of grain size and grain boundary on the energy storage performance of polycrystalline ferroelectrics. Appl. Phys. Lett. 2024, 125, 152903.
109. Zhu, C.; Cai, Z.; Xiao, M.; et al. Boosting effective capacitance of nanograined BaTiO3-based ceramics via a precise core-shell-structure optimization strategy. J. Alloys. Compd. 2024, 984, 174037.
110. Cai, Z.; Zhu, C.; Wu, L.; Luo, B.; Feng, P.; Wang, X. Vortex domain configuration for energy-storage ferroelectric ceramics design: a phase-field simulation. Appl. Phys. Lett. 2021, 119, 032901.
111. Wang, J.; Liang, D.; Ma, J.; et al. Polar Solomon rings in ferroelectric nanocrystals. Nat. Commun. 2023, 14, 3941.
112. Liu, D.; Wang, J.; Jafri, H. M.; et al. Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. npj. Quantum. Mater. 2022, 7, 444.
113. Das, S.; Hong, Z.; Stoica, V. A.; et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 2021, 20, 194-201.
114. Das, S.; Tang, Y. L.; Hong, Z.; et al. Observation of room-temperature polar skyrmions. Nature 2019, 568, 368-72.
115. Zhou, L.; Huang, Y.; Das, S.; et al. Local manipulation and topological phase transitions of polar skyrmions. Matter 2022, 5, 1031-41.
116. Du, G.; Zhou, L.; Huang, Y.; Wu, Y.; Tian, H.; Hong, Z. Design of polar skyrmion-based nanoelectronic prototype devices with phase-field simulations. Adv. Funct. Mater. 2024, 34, 2405594.
117. Liu, Y.; Liu, J.; Pan, H.; et al. Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance. Adv. Mater. 2022, 34, 2108772.
118. Zhao, Y.; Ouyang, J.; Wang, K.; et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy. Storage. Mater. 2021, 39, 81-8.
119. Wang, J.; Su, Y.; Wang, B.; Ouyang, J.; Ren, Y.; Chen, L. Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano. Energy. 2020, 72, 104665.
120. Xu, S.; Shi, X.; Pan, H.; et al. Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors. Adv. Theory. Simul. 2022, 5, 2100324.
121. Guo, C.; Yang, H.; Dong, S.; et al. Advancing energy-storage performance in freestanding ferroelectric thin films: insights from phase-field simulations. Adv. Elect. Mater. 2024, 10, 2400001.
122. Ma, C. H.; Liao, Y. K.; Zheng, Y.; et al. Synthesis of a new ferroelectric relaxor based on a combination of antiferroelectric and paraelectric systems. ACS. Appl. Mater. Interfaces. 2022, 14, 22278-86.
123. Zhu, J.; Liu, Z.; Zhong, B.; Wang, Y.; Xu, B. Domain size and charge defects affecting the polarization switching of antiferroelectric domains. Chinese. Phys. B. 2023, 32, 047701.
124. Wang, J.; Fan, X.; Liu, Z.; et al. Superior energy storage performance realized in antiferroelectric 0.10 wt% MnO2–AgNbO3 ceramics via Bi-doping induced phase engineering. J. Mater. Chem. A. 2023, 11, 22512-21.
125. Karniadakis, G. E.; Kevrekidis, I. G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422-40.