REFERENCES
1. Abbet, S.; Sanchez, A.; Heiz, U.; et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): one atom is enough! J. Am. Chem. Soc. 2000, 122, 3453-7.
2. Li, Y.; Zhou, Z.; Yu, G.; Chen, W.; Chen, Z. CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C. 2010, 114, 6250-4.
3. Lee, D. H.; Lee, W. J.; Lee, W. J.; Kim, S. O.; Kim, Y. H. Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 2011, 106, 175502.
4. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.
5. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous. Acc. Chem. Res. 2013, 46, 1740-8.
6. Akri, M.; Zhao, S.; Li, X.; et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181.
7. Han, B.; Guo, Y.; Huang, Y.; et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. Engl. 2020, 59, 11824-9.
8. Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558-65.
9. Wang, Y.; Arandiyan, H.; Scott, J.; Aguey-Zinsou, K.; Amal, R. Single atom and nanoclustered Pt catalysts for selective CO2 reduction. ACS. Appl. Energy. Mater. 2018, 1, 6781-9.
10. Bai, S.; Liu, F.; Huang, B.; et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 2020, 11, 954.
11. Sun, C. N.; Wang, Z. L.; Lang, X. Y.; Wen, Z.; Jiang, Q. Synergistic effect of active sites of double-atom catalysts for nitrogen reduction reaction. ChemSusChem 2021, 14, 4593-600.
12. Wang, P.; Chang, F.; Gao, W.; et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64-70.
13. Guo, X.; Gu, J.; Lin, S.; Zhang, S.; Chen, Z.; Huang, S. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709-21.
14. Ouyang, Y.; Shi, L.; Bai, X.; Li, Q.; Wang, J. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 2020, 11, 1807-13.
15. Chen, Z.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J. Mater. Chem. A. 2019, 7, 3492-515.
16. Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 2008, 320, 889-92.
17. Foster, S.; Bakovic, S. I. P.; Duda, R. D.; et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490-500.
18. Fu, X.; Zhang, J.; Kang, Y. Recent advances and challenges of electrochemical ammonia synthesis. Chem. Catal. 2022, 2, 2590-613.
19. Iqbal, M. S.; Yao, Z.; Ruan, Y.; et al. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare. Met. 2023, 42, 1075-97.
20. Shang, H.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano. Res. 2023, 16, 6477-506.
21. He, T.; Puente-Santiago, A. R.; Xia, S.; Ahsan, M. A.; Xu, G.; Luque, R. Experimental and theoretical advances on single atom and atomic cluster-decorated low-dimensional platforms towards superior electrocatalysts. Adv. Energy. Mater. 2022, 12, 2200493.
22. Chen, J.; Cao, H.; Chen, J.; et al. Heterogeneous two-atom single-cluster catalysts for the nitrogen electroreduction reaction. J. Phys. Chem. C. 2021, 125, 19821-30.
23. Yan, Z.; Ji, M.; Xia, J.; Zhu, H. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Adv. Energy. Mater. 2020, 10, 1902020.
24. Qu, J.; Xiao, J.; Chen, H.; Liu, X.; Wang, T.; Zhang, Q. Orbital symmetry matching: achieving superior nitrogen reduction reaction over single-atom catalysts anchored on Mxene substrates. Chinese. J. Catal. 2021, 42, 288-96.
25. Wang, T.; Abild-Pedersen, F. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2106527118.
26. Yao, Y.; Zhu, S.; Wang, H.; Li, H.; Shao, M. A spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces. Angew. Chem. Int. Ed. Engl. 2020, 59, 10479-83.
27. Ling, C.; Zhang, Y.; Li, Q.; Bai, X.; Shi, L.; Wang, J. New mechanism for N2 reduction: the essential role of surface hydrogenation. J. Am. Chem. Soc. 2019, 141, 18264-70.
28. Abghoui, Y.; Skúlason, E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal. Today. 2017, 286, 69-77.
29. Abghoui, Y.; Skúlason, E. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C. 2017, 121, 6141-51.
30. Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Electrocatalytic reduction of nitrogen: from haber-bosch to ammonia artificial leaf. Chem 2019, 5, 263-83.
31. Shaw, S.; Lukoyanov, D.; Danyal, K.; Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of N2 reduction. J. Am. Chem. Soc. 2014, 136, 12776-83.
32. Zhao, J.; Chen, Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J. Am. Chem. Soc. 2017, 139, 12480-7.
33. Wang, Z.; Yu, Z.; Zhao, J. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 12835-44.
34. Zhao, J.; Zhao, J.; Cai, Q. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248-55.
35. Zhai, X.; Yan, H.; Ge, G.; et al. The single-Mo-atom-embedded-graphdiyne monolayer with ultra-low onset potential as high efficient electrocatalyst for N2 reduction reaction. Appl. Surf. Sci. 2020, 506, 144941.
36. Liu, S.; Liu, Y.; Gao, X.; et al. Two-dimensional transition metal porphyrin sheets as a promising single-atom-catalyst for dinitrogen electrochemical reduction to ammonia: a theoretical study. J. Phys. Chem. C. 2020, 124, 1492-9.
37. Xu, L.; Yang, L. M.; Ganz, E. Electrocatalytic reduction of N2 using metal-doped borophene. ACS. Appl. Mater. Interfaces. 2021, 13, 14091-101.
38. Li, C.; Liu, X.; Wu, D.; Xu, H.; Fan, G. Theoretical study of transition metal doped α-borophene nanosheet as promising electrocatalyst for electrochemical reduction of N2. Comput. Theor. Chem. 2022, 1213, 113732.
39. Ling, C.; Bai, X.; Ouyang, Y.; Du, A.; Wang, J. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C. 2018, 122, 16842-7.
40. Zhao, W.; Zhang, L.; Luo, Q.; et al. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS. Catal. 2019, 9, 3419-25.
41. Liu, P.; Fu, C.; Li, Y.; Wei, H. Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N2 reduction reactions: a DFT study. Phys. Chem. Chem. Phys. 2020, 22, 9322-9.
42. Niu, H.; Wang, X.; Shao, C.; Zhang, Z.; Guo, Y. Computational screening single-atom catalysts supported on g-CN for N2 reduction: high activity and selectivity. ACS. Sustainable. Chem. Eng. 2020, 8, 13749-58.
43. Li, L.; Li, B.; Guo, Q.; Li, B. Theoretical screening of single-atom-embedded MoSSe nanosheets for electrocatalytic N2 fixation. J. Phys. Chem. C. 2019, 123, 14501-7.
44. Cui, Q.; Qin, G.; Wang, W.; K, R. G.; Du, A.; Sun, Q. Mo-based 2D MOF as a highly efficient electrocatalyst for reduction of N2 to NH3: a density functional theory study. J. Mater. Chem. A. 2019, 7, 14510-8.
45. Huang, Y.; Yang, T.; Yang, L.; et al. Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A. 2019, 7, 15173-80.
46. Zhou, H. Y.; Li, J. C.; Wen, Z.; Jiang, Q. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping. Phys. Chem. Chem. Phys. 2019, 21, 14583-8.
47. Ou, P.; Zhou, X.; Meng, F.; Chen, C.; Chen, Y.; Song, J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale 2019, 11, 13600-11.
48. Qi, J.; Gao, L.; Wei, F.; Wan, Q.; Lin, S. Design of a high-performance electrocatalyst for N2 conversion to NH3 by trapping single metal atoms on stepped CeO2. ACS. Appl. Mater. Interfaces. 2019, 11, 47525-34.
49. Gao, L.; Wang, F.; Yu, M.; et al. A novel phosphotungstic acid-supported single metal atom catalyst with high activity and selectivity for the synthesis of NH3 from electrochemical N2 reduction: a DFT prediction. J. Mater. Chem. A. 2019, 7, 19838-45.
50. Talib, S. H.; Yu, X.; Lu, Z.; et al. A polyoxometalate cluster-based single-atom catalyst for NH3 synthesis via an enzymatic mechanism. J. Mater. Chem. A. 2022, 10, 6165-77.
51. Li, Q.; Liu, C.; Qiu, S.; et al. Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction. J. Mater. Chem. A. 2019, 7, 21507-13.
52. Ma, Z.; Cui, Z.; Xiao, C.; et al. Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer. Nanoscale 2020, 12, 1541-50.
53. Hu, J.; Tian, L.; Wang, H.; et al. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction. Chinese. J. of. Catal. 2023, 52, 252-62.
54. Zhang, N.; Gao, Y.; Ma, L.; et al. Single transition metal atom anchored on g-C3N4 as an electrocatalyst for nitrogen fixation: a computational study. Int. J. Hydrogen. Energy. 2023, 48, 7621-31.
55. Sahoo, S. K.; Heske, J.; Antonietti, M.; Qin, Q.; Oschatz, M.; Kühne, T. D. Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS. Appl. Energy. Mater. 2020, 3, 10061-9.
56. Choi, C.; Back, S.; Kim, N.; Lim, J.; Kim, Y.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS. Catal. 2018, 8, 7517-25.
57. Zhu, H.; Hu, Y.; Wei, S.; Hua, D. Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study. J. Phys. Chem. C. 2019, 123, 4274-81.
58. Feng, Z.; Tang, Y.; Chen, W.; et al. Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation. Phys. Chem. Chem. Phys. 2020, 22, 9216-24.
59. Xu, Z.; Song, R.; Wang, M.; Zhang, X.; Liu, G.; Qiao, G. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study. Phys. Chem. Chem. Phys. 2020, 22, 26223-30.
60. Zhang, J.; Yang, H.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv. Energy. Mater. 2021, 11, 2002473.
61. Ikeda, T.; Aratani, N.; Osuka, A. Synthesis of extremely pi-extended porphyrin tapes from hybrid meso-meso linked porphyrin arrays: an approach towards the conjugation length. Chem. Asian. J. 2009, 4, 1248-56.
62. Nakamura, Y.; Aratani, N.; Shinokubo, H.; et al. A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J. Am. Chem. Soc. 2006, 128, 4119-27.
63. Yang, L.; Chen, F.; Wu, M.; Song, E.; Xiao, B.; Jiang, Q. Mo decoration on graphene edge for nitrogen fixation: a computational investigation. Appl. Surf. Sci. 2021, 568, 150867.
64. Patel, A. M.; Ringe, S.; Siahrostami, S.; Bajdich, M.; Nørskov, J. K.; Kulkarni, A. R. Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts. J. Phys. Chem. C. 2018, 122, 29307-18.
65. Rodriguez, M. M.; Bill, E.; Brennessel, W. W.; Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 2011, 334, 780-3.
66. Wang, T.; Guo, Z.; Zhang, X.; et al. Recent progress of iron-based electrocatalysts for nitrogen reduction reaction. J. Mater. Sci. Technol. 2023, 140, 121-34.
67. Li, X. F.; Li, Q. K.; Cheng, J.; et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706-9.
68. Li, B.; Du, W.; Wu, Q.; Dai, Y.; Huang, B.; Ma, Y. Coronene-based 2D metal–organic frameworks: a new family of promising single-atom catalysts for nitrogen reduction reaction. J. Phys. Chem. C. 2021, 125, 20870-6.
69. Sippel, D.; Rohde, M.; Netzer, J.; et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 2018, 359, 1484-9.
70. Liu, C.; Li, Q.; Zhang, J.; Jin, Y.; Macfarlane, D. R.; Sun, C. Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. J. Mater. Chem. A. 2019, 7, 4771-6.
71. Yin, H.; Li, S.; Gan, L.; Wang, P. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A. 2019, 7, 11908-14.
72. Chen, Z.; Zhao, J.; Cabrera, C. R.; Chen, Z. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small. Methods. 2019, 3, 1800368.
73. Wang, M.; Huang, Y.; Ma, F.; et al. Theoretical insights into the mechanism of nitrogen-to-ammonia electroreduction on TM/g-C9N10. Mol. Cataly. 2023, 547, 113391.
74. Saeidi, N.; Esrafili, M. D.; Sardroodi, J. J. Electrochemical reduction of N2 to NH3 using a co-atom stabilized on defective N-doped graphene: a computational study. ChemistrySelect 2019, 4, 12216-26.
75. Wu, J.; Li, J. H.; Yu, Y. X. Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials. ACS. Appl. Mater. Interfaces. 2021, 13, 10026-36.
76. Gao, Y.; Yang, Y.; Hao, L.; et al. Single Nb atom modified anatase TiO2(110) for efficient electrocatalytic nitrogen reduction reaction. Chem. Catal. 2022, 2, 2275-88.
77. Li, Q.; Qiu, S.; Liu, C.; et al. Computational design of single-molybdenum catalysts for the nitrogen reduction reaction. J. Phys. Chem. C. 2019, 123, 2347-52.
78. Jiao, D.; Liu, Y.; Cai, Q.; Zhao, J. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study. J. Mater. Chem. A. 2021, 9, 1240-51.
79. Wang, X.; Yang, L. Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering. J. Mater. Chem. A. 2022, 10, 1481-96.
80. Tang, Y.; Wang, Y.; Cheng, X.; Zhang, H. Single vanadium atom achored on sulfur-doped graphene as an efficient electrocatalyst toward the nitrogen reduction reaction: a computational view. J. Phys. Chem. C. 2023, 127, 24574-82.
81. Di Liberto G, Giordano L, Pacchioni G. Predicting the stability of single-atom catalysts in electrochemical reactions. ACS. Catal. 2024, 14, 45-55.
82. Chu, Z.; Kang, X.; Duan, X. Single metal atom anchored on a CN monolayer as an excellent electrocatalyst for the nitrogen reduction reaction. Phys. Chem. Chem. Phys. 2021, 23, 2658-62.
83. Song, R.; Yang, J.; Wang, M.; et al. Theoretical study on P-coordinated metal atoms embedded in arsenene for the conversion of nitrogen to ammonia. ACS. Omega. 2021, 6, 8662-71.
84. Wang, X.; Zhang, Q.; Hao, W.; Fang, C.; Zhou, J.; Xu, J. A novel porous graphitic carbon nitride (g-C7N3) substrate: prediction of metal-based π–d conjugated nanosheets toward the highly active and selective electrocatalytic nitrogen reduction reaction. J. Mater. Chem. A. 2022, 10, 15036-50.
85. Song, W.; Xie, K.; Wang, J.; Guo, Y.; He, C.; Fu, L. Density functional theory study of transition metal single-atoms anchored on graphyne as efficient electrocatalysts for the nitrogen reduction reaction. Phys. Chem. Chem. Phys. 2021, 23, 10418-28.
86. Zhao, Y.; Qu, J.; Li, H.; et al. Atomically dispersed uranium enables an unprecedentedly high NH3 yield rate. Nano. Lett. 2022, 22, 4475-81.
87. Meng, Q.; Liu, L.; Song, D.; Wang, S.; Qin, R.; Fu, G. Flexible iron clusters promoting ammonia synthesis: a density functional theory prediction. J. Phys. Chem. Lett. 2024, 15, 10623-8.
88. Li, R.; Wang, D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy. Mater. 2022, 12, 2103564.
89. Qian, Y.; Liu, Y.; Zhao, Y.; Zhang, X.; Yu, G. Single vs double atom catalyst for N2 activation in nitrogen reduction reaction: a DFT perspective. EcoMat 2020, 2, e12014.
90. Chen, Z. W.; Yan, J.; Jiang, Q. Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? Small. Methods. 2019, 3, 1800291.
91. Zhang, X.; Chen, A.; Zhang, Z.; Zhou, Z. Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J. Mater. Chem. A. 2018, 6, 18599-604.
92. Guo, R.; Hu, M.; Zhang, W.; He, J. Boosting electrochemical nitrogen reduction performance over binuclear Mo atoms on N-doped nanoporous graphene: a theoretical investigation. Molecules 2019, 24, 1777.
93. Zhang, Z.; Xu, X. g-C3N4-supported metal-pair catalysts toward efficient electrocatalytic nitrogen reduction: a computational evaluation. Adv. Theory. Simul. 2022, 5, 2100579.
94. Yang, Y.; Hu, C.; Shan, J.; et al. Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300989.
95. Wu, Y.; He, C.; Zhang, W. Building up a general selection strategy and catalytic performance prediction expressions of heteronuclear double-atom catalysts for N2 reduction. J. Energy. Chem. 2023, 82, 375-86.
96. Zheng, X.; Yao, Y.; Wang, Y.; Liu, Y. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study. Nanoscale 2020, 12, 9696-707.
97. He, T.; Puente, S. A. R.; Du, A. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J. Catal. 2020, 388, 77-83.
98. Li, Y.; Zhang, Q.; Li, C.; et al. Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction. J. Mater. Chem. A. 2019, 7, 22242-7.
99. Zheng, G.; Li, L.; Hao, S.; Zhang, X.; Tian, Z.; Chen, L. Double atom catalysts: heteronuclear transition metal dimer anchored on nitrogen-doped graphene as superior electrocatalyst for nitrogen reduction reaction. Adv. Theory. Simul. 2020, 3, 2000190.
100. Ma, D.; Zeng, Z.; Liu, L.; Jia, Y. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction. J. Energy. Chem. 2021, 54, 501-9.
101. Cui, C.; Zhang, H.; Cheng, R.; Huang, B.; Luo, Z. On the nature of three-atom metal cluster catalysis for N2 reduction to ammonia. ACS. Catal. 2022, 12, 14964-75.
102. Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.
103. Chen, Z. W.; Chen, L. X.; Jiang, M.; et al. A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. J. Mater. Chem. A. 2020, 8, 15086-93.
104. Guo, R.; An, W.; Liu, M.; et al. Modulating the coordination environment of active site structure for enhanced electrochemical nitrogen reduction: the mechanistic insight and an effective descriptor. Appl. Surf. Sci. 2024, 644, 158799.
105. Han, B.; Meng, H.; Li, F.; Zhao, J. Fe3 cluster anchored on the C2N monolayer for efficient electrochemical nitrogen fixation. Catalysts 2020, 10, 974.
106. Han, B.; Li, F. Regulating the electrocatalytic performance for nitrogen reduction reaction by tuning the N contents in Fe3@NxC20-x (x = 0~4): a DFT exploration. J. Mater. Inf. 2023, 3, 24.
107. Chen, S.; Gao, Y.; Wang, W.; Prezhdo, O. V.; Xu, L. Prediction of three-metal cluster catalysts on two-dimensional W2N3 support with integrated descriptors for electrocatalytic nitrogen reduction. ACS. Nano. , 2023, 1522-32.
108. Pei, W.; Zhang, W.; Yu, X.; et al. Computational design of spatially confined triatomic catalysts for nitrogen reduction reaction. J. Mater. Inf. 2023, 3, 26.
109. Pei, W.; Hou, L.; Yu, X.; et al. Graphitic carbon nitride supported trimeric metal clusters as electrocatalysts for N2 reduction reaction. J. Catal. 2024, 429, 115232.
110. Zhang, H.; Cui, C.; Luo, Z. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J. Phys. Chem. C. 2020, 124, 6260-6.
111. Anis, I.; Amin, S.; Rather, G. M.; Dar, M. A. N2 activation and reduction on graphdiyne supported single, double, and triple boron atom catalysts: a first principles investigation. ChemistrySelect 2023, 8, e202300993.
112. Wang, X.; Lin, L.; Li, B. First principles study of double boron atoms supported on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Crystals 2022, 12, 1744.
113. Rasool, A.; Anis, I.; Bhat, S. A.; Dar, M. A. Optimizing the NRR activity of single and double boron atom catalysts using a suitable support: a first principles investigation. Phys. Chem. Chem. Phys. 2023, 25, 22275-85.
114. Hu, Y.; Chen, J.; Wei, Z.; He, Q.; Zhao, Y. Recent advances and applications of machine learning in electrocatalysis. J. Mater. Inf. 2023, 3, 18.
115. Lu, Y.; Fang, C.; Zhang, Q.; et al. Single-atom catalytic N2 fixation with integrated descriptors on a novel π-π conjugated graphitic carbon nitride (g-C13N15) platform obtained by self-doping design: prediction of ultrahigh activity and desirable selectivity. J. Power. Sources. 2024, 595, 234030.
116. Lv, X.; Wei, W.; Huang, B.; Dai, Y.; Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano. Lett. 2021, 21, 1871-8.
117. Sun, J.; Xia, P.; Lin, Y.; et al. Theoretical exploration of the nitrogen fixation mechanism of two-dimensional dual-metal TM1TM2@C9N4 electrocatalysts. Nanoscale. Horiz. 2023, 8, 211-23.
118. Sun, J.; Chen, A.; Guan, J.; et al. Interpretable machine learning-assisted high-throughput screening for understanding NRR electrocatalyst performance modulation between active center and C-N coordination. Energy. Environ. Mater. 2024, 7, e12693.
119. Zhang, S.; Lu, S.; Zhang, P.; et al. Accelerated discovery of single-atom catalysts for nitrogen fixation via machine learning. Energy. Environ. Mater. 2023, 6, e12304.
120. Zhang, Y.; Wang, Y.; Ma, N.; Fan, J. Directly predicting N2 electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features. J. Energy. Chem. 2024, 97, 139-48.
121. Chen, C.; Cao, J.; Yin, W.; Zhang, Q.; Yao, Y.; Wei, X. Single transition metal atom modified MoSe2 as a promising electrocatalyst for nitrogen fixation: a first-principles study. Chem. Phys. Lett. 2021, 780, 138939.
122. Ma, D.; Zeng, Z.; Liu, L.; Huang, X.; Jia, Y. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J. Phys. Chem. C. 2019, 123, 19066-76.
123. Ren, C.; Jiang, Q.; Lin, W.; Zhang, Y.; Huang, S.; Ding, K. Density functional theory study of single-atom V, Nb, and Ta catalysts on graphene and carbon nitride for selective nitrogen reduction. ACS. Appl. Nano. Mater. 2020, 3, 5149-59.
124. Luo, Y.; Li, M.; Dai, Y.; et al. Transition metal-modified Co4 clusters supported on graphdiyne as an effective nitrogen reduction reaction electrocatalyst. Inorg. Chem. 2021, 60, 18251-9.
125. Liu, S.; Liu, J. Rational design of highly efficient electrocatalytic single-atom catalysts for nitrogen reduction on nitrogen-doped graphene and g-C2N supports. J. Power. Sources. 2022, 535, 231449.
126. Wang, J.; Luo, Z.; Zhang, X.; et al. Single transition metal atom anchored on VSe2 as electrocatalyst for nitrogen reduction reaction. Appl. Surf. Sci. 2022, 580, 152272.
127. Zhang, Y.; Wang, X.; Liu, T.; et al. Charge and spin communication between dual metal single-atom sites on C2N sheets: regulating electronic spin moments of Fe atoms for N2 activation and reduction. J. Mater. Chem. A. 2022, 10, 23704-11.
128. Nong, W.; Qin, S.; Huang, F.; et al. Designing C3N-supported single atom catalysts for efficient nitrogen reduction based on descriptor of catalytic activity. Carbon 2021, 182, 297-306.
129. Zheng, X.; Liu, Y.; Yao, Y. Trimetallic single-cluster catalysts for electrochemical nitrogen reduction reaction: activity prediction, mechanism, and electronic descriptor. Chem. Eng. J. 2021, 426, 130745.