1. Huang Y, Zheng Y, Li X, et al. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett 2018;3:1604-12.
2. Eng AYS, Soni CB, Lum Y, et al. Theory-guided experimental design in battery materials research. Sci Adv 2022;8:eabm2422.
3. Du M, Du K, Guo J, et al. Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries. Rare Met 2023;42:1603-13.
4. Huang Z, Zhang X, Zhao X, et al. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Sci China Mater 2023;66:79-87.
5. Huang Z, Zhang X, Zhao X, et al. Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. J Mater Sci Technol 2023;160:9-17.
6. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67.
7. Kubota K, Ikeuchi I, Nakayama T, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J Phys Chem C 2015;119:166-75.
8. Xia X, Dahn JR. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem Solid State Lett 2012;15:A1.
9. Yu C, Park J, Jung H, et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ Sci 2015;8:2019-26.
10. Ikhe AB, Park WB, Manasi M, Ahn D, Sohn KS, Pyo M. Unprecedented cyclability and moisture durability of NaCrO2 sodium-ion battery cathode via simultaneous Al doping and Cr2O3 coating. ACS Appl Mater Interfaces 2023;15:14958-69.
11. Wable M, Bal B, Capraz ÖÖ. Probing electrochemical strain generation in sodium chromium oxide (NaCrO2) cathode in Na-ion batteries during charge/discharge. Energy Adv 2024;3:601-8.
12. Ding J, Zhou Y, Sun Q, Fu Z. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 2012;22:85-8.
13. Liang L, Zhang W, Denis DK, et al. Comparative investigations of high-rate NaCrO2 cathodes towards wide-temperature-tolerant pouch-type Na-ion batteries from -15 to 55 °C: nanowires vs. bulk. J Mater Chem A 2019;7:11915-27.
14. Liang L, Sun X, Denis DK, et al. Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries. ACS Appl Mater Interfaces 2019;11:4037-46.
15. Wang Y, Cui P, Zhu W, et al. Enhancing the electrochemical performance of an O3-NaCrO2 cathode in sodium-ion batteries by cation substitution. J Power Sources 2019;435:226760.
16. Li Y, Chen M, Liu B, Zhang Y, Liang X, Xia X. Heteroatom doping: an effective way to boost sodium ion storage. Adv Energy Mater 2020;10:2000927.
17. Li XL, Bao J, Li YF, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution. Adv Sci 2021;8:2004448.
18. Xi K, Chu S, Zhang X, et al. A high-performance layered Cr-based cathode for sodium-ion batteries. Nano Energy 2020;67:104215.
19. Li W, Wang Y, Hu G, et al. Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life. J Alloys Compd 2019;779:147-55.
20. Lee I, Oh G, Lee S, et al. Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Stor Mater 2021;41:183-95.
21. Xu H, Yan Q, Yao W, Lee C, Tang Y. Mainstream optimization strategies for cathode materials of sodium-ion batteries. Small Struct 2022;3:2100217.
22. Ko W, Cho M, Kang J, et al. Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition. Energy Stor Mater 2022;46:289-99.
23. Ma C, Li X, Yue X, Bao J, Luo R, Zhou Y. Suppressing O3-O’3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution. Chem Eng J 2022;432:134305.
24. Wang Y, Yang Z, Qian Y, Gu L, Zhou H. New insights into improving rate performance of lithium-rich cathode material. Adv Mater 2015;27:3915-20.
25. Liu Y, Jiang W, Ling M, Fan X, Wang L, Liang C. Revealing lithium configuration in aged layered oxides for effective regeneration. ACS Appl Mater Interfaces 2023;15:9465-74.
26. Biasi L, Kondrakov AO, Geßwein H, Brezesinski T, Hartmann P, Janek J. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. J Phys Chem C 2017;121:26163-71.
27. Zhao C, Yao Z, Wang Q, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J Am Chem Soc 2020;142:5742-50.
28. Zhai Y, Yang W, Ning D, et al. Improving the cycling and air-storage stability of LiNi0.8Co0.1Mn0.1O2 through integrated surface/interface/doping engineering. J Mater Chem A 2020;8:5234-45.
29. Feng J, Luo SH, Qian L, et al. Properties of the “Z”-phase in Mn-rich P2-Na0.67Ni0.1Mn0.8Fe0.1O2 as sodium-ion-battery cathodes. Small 2023;19:e2208005.
30. Wang H, Gao X, Zhang S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano 2023;17:12530-43.
31. Wang PF, Xin H, Zuo TT, et al. An abnormal 3.7 volt O3-type sodium-ion battery cathode. Angew Chem Int Ed 2018;57:8178-83.
32. Sathiya M, Jacquet Q, Doublet M, Karakulina OM, Hadermann J, Tarascon J. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv Energy Mater 2018;8:1702599.
33. Chu S, Kim D, Choi G, et al. Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: random Na extraction and Na-free layer formation. Angew Chem Int Ed 2023;62:e202216174.
34. Wang PF, You Y, Yin YX, et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 2016;55:7445-9.
35. Zhou Y, Ding J, Nam K, et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. J Mater Chem A 2013;1:11130.
36. Ma Q, Chen Z, Zhong S, et al. Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 2021;81:105622.
37. Guo W, Zhang C, Zhang Y, et al. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials. Adv Mater 2021;33:e2103173.
38. Lin C, Meng X, Liang M, et al. Facilitating reversible transition metal migration and expediting ion diffusivity via oxygen vacancies for high performance O3-type sodium layered oxide cathodes. J Mater Chem A 2022;11:68-76.
39. Wang W, He R, Wang Y, et al. Boosting methanol-mediated CO2 hydrogenation into aromatics by synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst. Chemistry 2023;29:e202301135.
40. Cui SL, Zhang X, Wu XW, et al. Understanding the structure-performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective. ACS Appl Mater Interfaces 2020;12:47655-66.
41. Carey JJ, Legesse M, Nolan M. Low valence cation doping of bulk Cr2O3: charge compensation and oxygen vacancy formation. J Phys Chem C 2016;120:19160-74.
42. Moltved KA, Kepp KP. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions. J Phys Chem C 2019;123:18432-44.
43. Li H, Wang J, Xu S, et al. Universal design strategy for air-stable layered Na-ion cathodes toward sustainable energy storage. Adv Mater 2024;36:e2403073.
44. Hou P, Gong M, Tian Y, Li F. A new high-valence cation pillar within the Li layer of compositionally optimized Ni-rich LiNi0.9Co0.1O2 with improved structural stability for Li-ion battery. J Colloid Interface Sci 2024;653:129-36.
45. Wang Y, Feng Z, Cui P, et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat Commun 2021;12:13.
46. Wang S, Chen F, Zhu TY, et al. In situ-formed Cr2O3 Coating on NaCrO2 with improved sodium storage performance. ACS Appl Mater Interfaces 2020;12:44671-8.
47. Wang Y, Li W, Hu G, et al. Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chem Mater 2019;31:5214-23.
48. Konarov A, Choi JU, Bakenov Z, Myung S. Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. J Mater Chem A 2018;6:8558-67.
49. Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem 2016;8:684-91.
50. Ding F, Zhao C, Xiao D, et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J Am Chem Soc 2022;144:8286-95.
51. Liu T, Liu J, Li L, et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022;606:305-12.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.