REFERENCES

1. Huang Y, Zheng Y, Li X, et al. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett 2018;3:1604-12.

2. Eng AYS, Soni CB, Lum Y, et al. Theory-guided experimental design in battery materials research. Sci Adv 2022;8:eabm2422.

3. Du M, Du K, Guo J, et al. Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries. Rare Met 2023;42:1603-13.

4. Huang Z, Zhang X, Zhao X, et al. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Sci China Mater 2023;66:79-87.

5. Huang Z, Zhang X, Zhao X, et al. Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. J Mater Sci Technol 2023;160:9-17.

6. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67.

7. Kubota K, Ikeuchi I, Nakayama T, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J Phys Chem C 2015;119:166-75.

8. Xia X, Dahn JR. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem Solid State Lett 2012;15:A1.

9. Yu C, Park J, Jung H, et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ Sci 2015;8:2019-26.

10. Ikhe AB, Park WB, Manasi M, Ahn D, Sohn KS, Pyo M. Unprecedented cyclability and moisture durability of NaCrO2 sodium-ion battery cathode via simultaneous Al doping and Cr2O3 coating. ACS Appl Mater Interfaces 2023;15:14958-69.

11. Wable M, Bal B, Capraz ÖÖ. Probing electrochemical strain generation in sodium chromium oxide (NaCrO2) cathode in Na-ion batteries during charge/discharge. Energy Adv 2024;3:601-8.

12. Ding J, Zhou Y, Sun Q, Fu Z. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 2012;22:85-8.

13. Liang L, Zhang W, Denis DK, et al. Comparative investigations of high-rate NaCrO2 cathodes towards wide-temperature-tolerant pouch-type Na-ion batteries from -15 to 55 °C: nanowires vs. bulk. J Mater Chem A 2019;7:11915-27.

14. Liang L, Sun X, Denis DK, et al. Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries. ACS Appl Mater Interfaces 2019;11:4037-46.

15. Wang Y, Cui P, Zhu W, et al. Enhancing the electrochemical performance of an O3-NaCrO2 cathode in sodium-ion batteries by cation substitution. J Power Sources 2019;435:226760.

16. Li Y, Chen M, Liu B, Zhang Y, Liang X, Xia X. Heteroatom doping: an effective way to boost sodium ion storage. Adv Energy Mater 2020;10:2000927.

17. Li XL, Bao J, Li YF, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution. Adv Sci 2021;8:2004448.

18. Xi K, Chu S, Zhang X, et al. A high-performance layered Cr-based cathode for sodium-ion batteries. Nano Energy 2020;67:104215.

19. Li W, Wang Y, Hu G, et al. Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life. J Alloys Compd 2019;779:147-55.

20. Lee I, Oh G, Lee S, et al. Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Stor Mater 2021;41:183-95.

21. Xu H, Yan Q, Yao W, Lee C, Tang Y. Mainstream optimization strategies for cathode materials of sodium-ion batteries. Small Struct 2022;3:2100217.

22. Ko W, Cho M, Kang J, et al. Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition. Energy Stor Mater 2022;46:289-99.

23. Ma C, Li X, Yue X, Bao J, Luo R, Zhou Y. Suppressing O3-O’3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution. Chem Eng J 2022;432:134305.

24. Wang Y, Yang Z, Qian Y, Gu L, Zhou H. New insights into improving rate performance of lithium-rich cathode material. Adv Mater 2015;27:3915-20.

25. Liu Y, Jiang W, Ling M, Fan X, Wang L, Liang C. Revealing lithium configuration in aged layered oxides for effective regeneration. ACS Appl Mater Interfaces 2023;15:9465-74.

26. Biasi L, Kondrakov AO, Geßwein H, Brezesinski T, Hartmann P, Janek J. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. J Phys Chem C 2017;121:26163-71.

27. Zhao C, Yao Z, Wang Q, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J Am Chem Soc 2020;142:5742-50.

28. Zhai Y, Yang W, Ning D, et al. Improving the cycling and air-storage stability of LiNi0.8Co0.1Mn0.1O2 through integrated surface/interface/doping engineering. J Mater Chem A 2020;8:5234-45.

29. Feng J, Luo SH, Qian L, et al. Properties of the “Z”-phase in Mn-rich P2-Na0.67Ni0.1Mn0.8Fe0.1O2 as sodium-ion-battery cathodes. Small 2023;19:e2208005.

30. Wang H, Gao X, Zhang S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano 2023;17:12530-43.

31. Wang PF, Xin H, Zuo TT, et al. An abnormal 3.7 volt O3-type sodium-ion battery cathode. Angew Chem Int Ed 2018;57:8178-83.

32. Sathiya M, Jacquet Q, Doublet M, Karakulina OM, Hadermann J, Tarascon J. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv Energy Mater 2018;8:1702599.

33. Chu S, Kim D, Choi G, et al. Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: random Na extraction and Na-free layer formation. Angew Chem Int Ed 2023;62:e202216174.

34. Wang PF, You Y, Yin YX, et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 2016;55:7445-9.

35. Zhou Y, Ding J, Nam K, et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. J Mater Chem A 2013;1:11130.

36. Ma Q, Chen Z, Zhong S, et al. Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 2021;81:105622.

37. Guo W, Zhang C, Zhang Y, et al. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials. Adv Mater 2021;33:e2103173.

38. Lin C, Meng X, Liang M, et al. Facilitating reversible transition metal migration and expediting ion diffusivity via oxygen vacancies for high performance O3-type sodium layered oxide cathodes. J Mater Chem A 2022;11:68-76.

39. Wang W, He R, Wang Y, et al. Boosting methanol-mediated CO2 hydrogenation into aromatics by synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst. Chemistry 2023;29:e202301135.

40. Cui SL, Zhang X, Wu XW, et al. Understanding the structure-performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective. ACS Appl Mater Interfaces 2020;12:47655-66.

41. Carey JJ, Legesse M, Nolan M. Low valence cation doping of bulk Cr2O3: charge compensation and oxygen vacancy formation. J Phys Chem C 2016;120:19160-74.

42. Moltved KA, Kepp KP. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions. J Phys Chem C 2019;123:18432-44.

43. Li H, Wang J, Xu S, et al. Universal design strategy for air-stable layered Na-ion cathodes toward sustainable energy storage. Adv Mater 2024;36:e2403073.

44. Hou P, Gong M, Tian Y, Li F. A new high-valence cation pillar within the Li layer of compositionally optimized Ni-rich LiNi0.9Co0.1O2 with improved structural stability for Li-ion battery. J Colloid Interface Sci 2024;653:129-36.

45. Wang Y, Feng Z, Cui P, et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat Commun 2021;12:13.

46. Wang S, Chen F, Zhu TY, et al. In situ-formed Cr2O3 Coating on NaCrO2 with improved sodium storage performance. ACS Appl Mater Interfaces 2020;12:44671-8.

47. Wang Y, Li W, Hu G, et al. Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chem Mater 2019;31:5214-23.

48. Konarov A, Choi JU, Bakenov Z, Myung S. Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. J Mater Chem A 2018;6:8558-67.

49. Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem 2016;8:684-91.

50. Ding F, Zhao C, Xiao D, et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J Am Chem Soc 2022;144:8286-95.

51. Liu T, Liu J, Li L, et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022;606:305-12.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/