REFERENCES
1. Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. Adv Mater 2024;36:e2305285.
2. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.
3. Tang R, Zhou S, Zhang Z, Zheng R, Huang J. Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation. Adv Mater 2021;33:e2005389.
4. Warnan J, Reisner E. Synthetic organic design for solar fuel systems. Angew Chem Int Ed Engl 2020;59:17344-54.
5. Wang Z, Hisatomi T, Li R, et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule 2021;5:344-59.
6. Ismail AA, Bahnemann DW. Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 2014;128:85-101.
7. Rawool SA, Yadav KK, Polshettiwar V. Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals. Chem Sci 2021;12:4267-99.
8. Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc Chem Res 2022;55:933-43.
9. Li Y, Lei Y, Li D, et al. Recent progress on photocatalytic CO2 conversion reactions over plasmonic metal-based catalysts. ACS Catal 2023;13:10177-204.
10. Lin Z, Jiang X, Xu W, et al. The effects of water, substrate, and intermediate adsorption on the photocatalytic decomposition of air pollutants over nano-TiO2 photocatalysts. Phys Chem Chem Phys 2024;26:662-78.
11. Wu H, Li L, Wang S, et al. Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications. Phys Chem Chem Phys 2023;25:25899-924.
12. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 1995;95:735-58.
13. Chen LX, Rajh T, Jäger W, Nedeljkovic J, Thurnauer MC. X-ray absorption reveals surface structure of titanium dioxide nanoparticles. J Synchrotron Radiat 1999;6:445-7.
15. Pan J, Liu G, Lu GQ, Cheng HM. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed Engl 2011;50:2133-7.
16. Yang HG, Sun CH, Qiao SZ, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008;453:638-41.
17. Feng N, Lin H, Song H, et al. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat Commun 2021;12:4652.
18. Yu J, Zhao X, Zhao Q. Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films. J Mater Sci Lett 2000;19:1015-7.
19. Zhu J, Liao M, Zhao C, et al. A comprehensive review on semiconductor-based photocatalysts toward the degradation of persistent pesticides. Nano Res 2023;16:6402-43.
20. Chen F, Ma T, Zhang T, Zhang Y, Huang H. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv Mater 2021;33:e2005256.
21. Wang H, Liu W, He X, Zhang P, Zhang X, Xie Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J Am Chem Soc 2020;142:14007-22.
22. Liu N, Schneider C, Freitag D, et al. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 2014;14:3309-13.
23. Wang F, Jiang Y, Gautam A, Li Y, Amal R. Exploring the origin of enhanced activity and reaction pathway for photocatalytic H2 production on Au/B-TiO2 catalysts. ACS Catal 2014;4:1451-7.
24. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001;293:269-71.
25. Chen S, Hu YH. Color TiO2 materials as emerging catalysts for visible-NIR light photocatalysis, a review. Catal Rev 2023.
26. Li X, Wu X, Liu S, Li Y, Fan J, Lv K. Effects of fluorine on photocatalysis. Chin J Catal 2020;41:1451-67.
27. Peiris S, de Silva HB, Ranasinghe KN, Bandara SV, Perera IR. Recent development and future prospects of TiO2 photocatalysis. J Chin Chem Soc 2021;68:738-69.
28. Xiu Z, Guo M, Zhao T, et al. Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chem Eng J 2020;382:123011.
29. Medhi R, Marquez MD, Lee TR. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl Nano Mater 2020;3:6156-85.
30. Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal 2020;10:14984-5007.
31. Wu S, Lin Y, Hu YH. Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review. J Mater Chem A 2021;9:2592-611.
32. Rahman MZ, Raziq F, Zhang H, Gascon J. Key strategies for enhancing H2 production in transition metal oxide based photocatalysts. Angew Chem Int Ed Engl 2023;62:e202305385.
33. Chakhtouna H, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Environ Sci Pollut Res Int 2021;28:44638-66.
34. Li X, Wei H, Song T, Lu H, Wang X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO2. Water Sci Technol 2023;88:1495-507.
35. Yao S, He J, Gao F, et al. Highly selective semiconductor photocatalysis for CO2 reduction. J Mater Chem A 2023;11:12539-58.
36. Lee D, Kim M, Danish M, Jo W. State-of-the-art review on photocatalysis for efficient wastewater treatment: attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. Catal Commun 2023;183:106764.
37. Lin S, Huang H, Ma T, Zhang Y. Photocatalytic oxygen evolution from water splitting. Adv Sci 2020;8:2002458.
38. Cao Y, Zhou P, Tu Y, et al. Modification of TiO2 nanoparticles with organodiboron molecules inducing stable surface Ti3+ complex. iScience 2019;20:195-204.
39. Jung D, Saleh LMA, Berkson ZJ, et al. A molecular cross-linking approach for hybrid metal oxides. Nat Mater 2018;17:341-8.
40. Kowalska E, Yoshiiri K, Wei Z, et al. Hybrid photocatalysts composed of titania modified with plasmonic nanoparticles and ruthenium complexes for decomposition of organic compounds. Appl Catal B Environ 2015;178:133-43.
41. Rengifo-herrera JA, Blanco M, Wist J, Florian P, Pizzio LR. TiO2 modified with polyoxotungstates should induce visible-light absorption and high photocatalytic activity through the formation of surface complexes. Appl Catal B Environ 2016;189:99-109.
42. Liu F, Feng N, Wang Q, et al. Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. J Am Chem Soc 2017;139:10020-8.
43. Jaeger CD, Bard AJ. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 1979;83:3146-52.
44. Nosaka Y, Komori S, Yawata K, Hirakawa T, Nosaka AY. Photocatalytic ˙OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys Chem Chem Phys 2003;5:4731-5.
45. Liu G, Yang HG, Wang X, et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J Am Chem Soc 2009;131:12868-9.
46. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photoch Photobio A 2000;134:139-42.
47. Guan H, Lin J, Qiao B, et al. Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew Chem Int Ed Engl 2016;55:2820-4.
48. Wu N, Wang J, Tafen de N, et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 2010;132:6679-85.
49. Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC. Trapped holes on titania colloids studied by electron paramagnetic resonance. J Phys Chem 1993;97:7277-83.
50. Yang L, Feng N, Wang Q, Chu Y, Xu J, Deng F. Surface water loading on titanium dioxide modulates photocatalytic water splitting. Cell Rep Phys Sci 2020;1:100013.
51. Yuan W, Zhu B, Fang K, et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021;371:517-21.
52. Song S, Song H, Li L, et al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat Catal 2021;4:1032-42.
53. Monai M, Jenkinson K, Melcherts AEM, et al. Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis. Science 2023;380:644-51.
54. Xu M, Qin X, Xu Y, et al. Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2-x/Ni catalysts. Nat Commun 2022;13:6720.
55. Wei J, Qin SN, Liu JL, et al. In situ raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO2/Pt sandwich structures. Angew Chem Int Ed Engl 2020;59:10343-7.
56. Zhu K, Zhu Q, Jiang M, et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO. Angew Chem Int Ed Engl 2022;61:e202207600.
57. Balajka J, Hines MA, DeBenedetti WJI, et al. High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 2018;361:786-9.
58. Guo Y, Huang Y, Zeng B, et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst. Nat Commun 2022;13:2648.
59. Chen Y, Soler L, Cazorla C, et al. Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution. Nat Commun 2023;14:6165.
60. Len T, Afanasiev P, Yan Y, Aouine M, Morfin F, Piccolo L. Operando X-ray absorption spectroscopic study of ultradispersed Mo/TiO2 CO2-hydrogenation catalysts: why does rutile promote methanol synthesis? ACS Catal 2023;13:13982-93.
61. Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO2 particles. J Phys Chem B 2005;109:6061-8.
62. Nakamura R, Imanishi A, Murakoshi K, Nakato Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc 2003;125:7443-50.
63. Copéret C, Liao WC, Gordon CP, Ong TC. Active sites in supported single-site catalysts: an NMR perspective. J Am Chem Soc 2017;139:10588-96.
64. Xu J, Wang Q, Deng F. Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Acc Chem Res 2019;52:2179-89.
65. Ashbrook SE, Sneddon S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J Am Chem Soc 2014;136:15440-56.
66. Kwak JH, Hu J, Mei D, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009;325:1670-3.
67. Wang Q, Li W, Hung I, et al. Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy. Nat Commun 2020;11:3620.
68. Peng L, Liu Y, Kim N, Readman JE, Grey CP. Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nat Mater 2005;4:216-9.
69. Ashbrook SE, Smith ME. Solid state 17O NMR-an introduction to the background principles and applications to inorganic materials. Chem Soc Rev 2006;35:718-35.
70. Wang M, Wu XP, Zheng S, et al. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy. Sci Adv 2015;1:e1400133.
71. Beck TJ, Klust A, Batzill M, Diebold U, Di Valentin C, Selloni A. Surface structure of TiO2(011)-(2×1). Phys Rev Lett 2004;93:036104.
72. Di Valentin C, Tilocca A, Selloni A, et al. Adsorption of water on reconstructed rutile TiO2(011)-(2 × 1): Ti=O double bonds and surface reactivity. J Am Chem Soc 2005;127:9895-903.
73. He Y, Tilocca A, Dulub O, Selloni A, Diebold U. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater 2009;8:585-9.
74. Yuan W, Zhu B, Li XY, et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020;367:428-30.
75. Aronson BJ, Blanford CF, Stein A. Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization. Chem Mater 1997;9:2842-51.
76. Shukri G, Kasai H. Density functional theory study of ethylene adsorption on clean anatase TiO2 (001) surface. Surf Sci 2014;619:59-66.
77. Sanz JF, Hernández NC, Márquez A. A first principles study of Pd deposition on the TiO2 (110) surface. TheorChem Acc 2000;104:317-22.
78. Zhou G, Jiang L, Dong Y, Li R, He D. Engineering the exposed facets and open-coordinated sites of brookite TiO2 to boost the loaded Ru nanoparticle efficiency in benzene selective hydrogenation. Appl Surf Sci 2019;486:187-97.
79. Vijay A, Mills G, Metiu H. Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces. J Chem Phys 2003;118:6536-51.
80. Posternak M, Baldereschi A, Delley B. Dissociation of water on anatase TiO2 nanoparticles: the role of undercoordinated Ti atoms at edges. J Phys Chem C 2009;113:15862-7.
81. Dette C, Pérez-osorio MA, Mangel S, Giustino F, Jung SJ, Kern K. Atomic structure of water monolayer on anatase TiO2 (101) surface. J Phys Chem C 2018;122:11954-60.
82. Dette C, Pérez-osorio MA, Mangel S, Giustino F, Jung SJ, Kern K. Single-molecule vibrational spectroscopy of H2O on anatase TiO2 (101). J Phys Chem C 2017;121:1182-7.
83. Gopal NO, Lo HH, Sheu SC, Ke SC. A potential site for trapping photogenerated holes on rutile TiO2 surface as revealed by EPR spectroscopy: an avenue for enhancing photocatalytic activity. J Am Chem Soc 2010;132:10982-3.
84. Nolan M, Iwaszuk A, Gray KA. Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and supported TiO2 nanoclusters. J Phys Chem C 2014;118:27890-900.
85. Xiong F, Yu YY, Wu Z, et al. Methanol conversion into dimethyl ether on the anatase TiO2(001) surface. Angew Chem Int Ed Engl 2016;55:623-8.
86. Dmitrieva LV, Vorotilova LS, Podkorytov IS, Shelyapina ME. A comparison of NMR spectral parameters of 47Ti and 49Ti nuclei in rutile and anatase. Phys Solid State 1999;41:1097-9.
87. Ganapathy S, Gore KU, Kumar R, Amoureux JP. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY. Solid State Nucl Magn Reson 2003;24:184-95.
88. Yamada K, Saito M, Ohashi R, Nakai T, Deguchi K, Shimizu T. Solid-state 47/49Ti nuclear magnetic resonance of TiO2. Chem Lett 2014;43:1520-1.
89. Quantities, units and symbols in physical chemistry. 2nd editon. 1993. Available from: https://old.iupac.org/publications/books/gbook/green_book_2ed.pdf. [Last accessed on 5 Jul 2024].
92. Bastow TJ, Whitfield HJ. 47,49Ti NMR: evolution of crystalline TiO2 from the gel state. Chem Mater 1999;11:3518-20.
93. Gervais C, Smith ME, Pottier A, Jolivet J, Babonneau F. Solid-State 47,49Ti NMR determination of the phase distribution of titania nanoparticles. Chem Mater 2001;13:462-7.
94. Bräuniger T, Madhu PK, Pampel A, Reichert D. Application of fast amplitude-modulated pulse trains for signal enhancement in static and magic-angle-spinning 47,49Ti-NMR spectra. Solid State Nucl Magn Reson 2004;26:114-20.
95. Larsen FH, Farnan I, Lipton AS. Separation of 47Ti and 49Ti solid-state NMR lineshapes by static QCPMG experiments at multiple fields. J Magn Reson 2006;178:228-36.
96. Epifani M, Comini E, Díaz R, Force C, Siciliano P, Faglia G. TiO2 colloidal nanocrystals surface modification by V2O5 species: Investigation by 47,49Ti MAS-NMR and H2, CO and NO2 sensing properties. Appl Surf Sci 2015;351:1169-73.
97. Gerothanassis IP. Oxygen-17 NMR spectroscopy: basic principles and applications (part I). Prog Nucl Magn Reson Spectrosc 2010;56:95-197.
98. Gerothanassis IP. Oxygen-17 NMR spectroscopy: basic principles and applications. Part II. Prog Nucl Magn Reson Spectrosc 2010;57:1-110.
99. Bastow TJ, Doran G, Whitfield HJ. Electron diffraction and 47,49Ti and 17O NMR studies of natural and synthetic brookite. Chem Mater 2000;12:436-9.
100. Lafond V, Gervais C, Maquet J, Prochnow D, Babonneau F, Mutin PH. 17O MAS NMR study of the bonding mode of phosphonate coupling molecules in a titanium oxo-alkoxo-phosphonate and in titania-based hybrid materials. Chem Mater 2003;15:4098-103.
101. Bastow TJ, Moodie AF, Smith ME, Whitfield HJ. Characterisation of titania gels by 17O nuclear magnetic resonance and electron diffraction. J Mater Chem 1993;3:697-702.
102. Rao Y, Kemp TF, Trudeau M, Smith ME, Antonelli DM. 17O and 15N solid state NMR studies on ligand-assisted templating and oxygen coordination in the walls of mesoporous Nb, Ta and Ti oxides. J Am Chem Soc 2008;130:15726-31.
103. Métro TX, Gervais C, Martinez A, Bonhomme C, Laurencin D. Unleashing the potential of 17O NMR spectroscopy using mechanochemistry. Angew Chem Int Ed Engl 2017;56:6803-7.
104. Sun X, Dyballa M, Yan J, Li L, Guan N, Hunger M. Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2. Chem Phys Lett 2014;594:34-40.
105. Li Y, Wu XP, Jiang N, et al. Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy. Nat Commun 2017;8:581.
106. Li Y, Wu XP, Liu C, et al. NMR and EPR studies of partially reduced TiO2. Acta Phys Chim Sin 2020;36:1905021.
107. Peng L, Huo H, Liu Y, Grey CP. 17O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 2007;129:335-46.
108. Merle N, Trébosc J, Baudouin A, et al. 17O NMR gives unprecedented insights into the structure of supported catalysts and their interaction with the silica carrier. J Am Chem Soc 2012;134:9263-75.
109. Guo Q, Ma Z, Zhou C, Ren Z, Yang X. Single molecule photocatalysis on TiO2 surfaces. Chem Rev 2019;119:11020-41.
110. Chen J, Hope MA, Lin Z, et al. Interactions of oxide surfaces with water revealed with solid-state NMR spectroscopy. J Am Chem Soc 2020;142:11173-82.
111. Ravera E, Luchinat C, Parigi G. Basic facts and perspectives of Overhauser DNP NMR. J Magn Reson 2016;264:78-87.
112. Gurinov A, Sieland B, Kuzhelev A, et al. Mixed-valence compounds as polarizing agents for overhauser dynamic nuclear polarization in solids*. Angew Chem Int Ed Engl 2021;60:15371-5.
113. Küçük SE, Biktagirov T, Sezer D. Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone. Phys Chem Chem Phys 2015;17:24874-84.
114. Wiśniewski D, Karabanov A, Lesanovsky I, Köckenberger W. Solid effect DNP polarization dynamics in a system of many spins. J Magn Reson 2016;264:30-8.
115. Banerjee D, Shimon D, Feintuch A, Vega S, Goldfarb D. The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals. J Magn Reson 2013;230:212-9.
116. Liao W, Ghaffari B, Gordon CP, Xu J, Copéret C. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS): principles, protocols, and practice. Curr Opin Colloid In 2018;33:63-71.
117. Park H, Uluca-Yazgi B, Heumann S, et al. Heteronuclear cross-relaxation effect modulated by the dynamics of N-functional groups in the solid state under 15N DP-MAS DNP. J Magn Reson 2020;312:106688.
118. Hovav Y, Feintuch A, Vega S. Theoretical aspects of dynamic nuclear polarization in the solid state - the cross effect. J Magn Reson 2012;214:29-41.
119. Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. Solid State Nucl Magn Reson 2019;101:116-43.
120. Lesage A, Lelli M, Gajan D, et al. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 2010;132:15459-61.
121. Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 2013;46:1942-51.
122. Kobayashi T, Perras FA, Slowing II, Sadow AD, Pruski M. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. ACS Catal 2015;5:7055-62.
123. Li W, Wang Q, Xu J, et al. Probing the surface of γ-Al2O3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Phys Chem Chem Phys 2018;20:17218-25.
124. Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP. Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy. J Am Chem Soc 2013;135:2975-8.
125. Perras FA, Boteju KC, Slowing II, Sadow AD, Pruski M. Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts. Chem Commun 2018;54:3472-5.
126. Perras FA, Kobayashi T, Pruski M. Natural Abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy. J Am Chem Soc 2015;137:8336-9.
127. Giovine R, Trébosc J, Pourpoint F, Lafon O, Amoureux JP. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods. J Magn Reson 2019;299:109-23.
128. Zhao X, Hoffbauer W, Schmedt auf der Günne J, Levitt MH. Heteronuclear polarization transfer by symmetry-based recoupling sequences in solid-state NMR. Solid State Nucl Magn Reson 2004;26:57-64.
129. Perras FA, Kobayashi T, Pruski M. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Phys Chem Chem Phys 2015;17:22616-22.
130. Chen CH, Gaillard E, Mentink-Vigier F, et al. Direct 17O isotopic labeling of oxides using mechanochemistry. Inorg Chem 2020;59:13050-66.
131. Nagashima H, Trébosc J, Kon Y, Sato K, Lafon O, Amoureux JP. Observation of low-γ quadrupolar nuclei by surface-enhanced NMR spectroscopy. J Am Chem Soc 2020;142:10659-72.
132. Khan SU, Al-Shahry M, Ingler WB Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002;297:2243-5.
133. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38:253-78.
134. Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001;414:625-7.
135. Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002;418:964-7.
136. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003;301:935-8.
137. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020;581:411-4.
138. Liu Z, Huang E, Orozco I, et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst. Science 2020;368:513-7.
139. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 2014;345:1599-602.
140. Merte LR, Peng G, Bechstein R, et al. Water-mediated proton hopping on an iron oxide surface. Science 2012;336:889-93.
141. Hussain H, Tocci G, Woolcot T, et al. Structure of a model TiO2 photocatalytic interface. Nat Mater 2017;16:461-6.
143. Lin L, Hisatomi T, Chen S, Takata T, Domen K. Visible-light-driven photocatalytic water splitting: recent progress and challenges. Trends Chem 2020;2:813-24.
144. Wang ZT, Wang YG, Mu R, et al. Probing equilibrium of molecular and deprotonated water on TiO2(110). Proc Natl Acad Sci U S A 2017;114:1801-5.
145. Du Y, Deskins NA, Zhang Z, Dohnálek Z, Dupuis M, Lyubinetsky I. Two pathways for water interaction with oxygen adatoms on TiO2(110). Phys Rev Lett 2009;102:096102.
146. Kristoffersen HH, Hansen JO, Martinez U, et al. Role of steps in the dissociative adsorption of water on rutile TiO2(110). Phys Rev Lett 2013;110:146101.
147. Kamal C, Stenberg N, Walle LE, et al. Core-level binding energy reveals hydrogen bonding configurations of water adsorbed on TiO2(110) surface. Phys Rev Lett 2021;126:016102.
148. Vittadini A, Selloni A, Rotzinger FP, Grätzel M. Structure and energetics of water adsorbed at TiO2 anatase 101 and 001 surfaces. Phys Rev Lett 1998;81:2954-7.
149. Tilocca A, Selloni A. Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 2004;20:8379-84.
150. Walle LE, Borg A, Johansson EMJ, et al. Mixed dissociative and molecular water adsorption on anatase TiO2 (101). J Phys Chem C 2011;115:9545-50.
151. Patrick CE, Giustino F. Structure of a water monolayer on the anatase TiO2(101) surface. Phys Rev Appl 2014;2:014001.
152. Fasulo F, Piccini G, Muñoz-garcía AB, Pavone M, Parrinello M. Dynamics of water dissociative adsorption on TiO2 anatase (101) at monolayer coverage and below. J Phys Chem C 2022;126:15752-8.
153. Boles MA, Ling D, Hyeon T, Talapin DV. The surface science of nanocrystals. Nat Mater 2016;15:141-53.
154. Zhang X, Qin J, Xue Y, et al. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 2014;4:4596.
155. Mueller DN, Machala ML, Bluhm H, Chueh WC. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat Commun 2015;6:6097.
156. Llordés A, Wang Y, Fernandez-Martinez A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat Mater 2016;15:1267-73.
157. Zandi O, Hamann TW. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem 2016;8:778-83.
158. Feng N, Liu F, Huang M, et al. Unravelling the efficient photocatalytic activity of boron-induced Ti3+ species in the surface layer of TiO2. Sci Rep 2016;6:34765.
159. Setvín M, Aschauer U, Scheiber P, et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 2013;341:988-91.
160. Peng YK, Keeling B, Li Y, et al. Unravelling the key role of surface features behind facet-dependent photocatalysis of anatase TiO2. Chem Commun 2019;55:4415-8.
161. Peng YK, Ye L, Qu J, et al. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: a zinc oxide case study. J Am Chem Soc 2016;138:2225-34.
162. Peng YK, Chou HL, Edman Tsang SC. Differentiating surface titanium chemical states of anatase TiO2 functionalized with various groups. Chem Sci 2018;9:2493-500.
163. Peng Y, Fu Y, Zhang L, et al. Probe-molecule-assisted NMR spectroscopy: a comparison with photoluminescence and electron paramagnetic resonance spectroscopy as a characterization tool in facet-specific photocatalysis. ChemCatChem 2017;9:155-60.
164. Peng YK, Hu Y, Chou HL, et al. Mapping surface-modified titania nanoparticles with implications for activity and facet control. Nat Commun 2017;8:675.
165. Zheng A, Liu SB, Deng F. 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chem Rev 2017;117:12475-531.
166. Zheng A, Huang SJ, Liu SB, Deng F. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys Chem Chem Phys 2011;13:14889-901.
167. Yao Q, Zhang L, Huang D, et al. MAS NMR studies on the formation and structure of oxygen vacancy on the CeO2 {110} surface under a reducing atmosphere. J Phys Chem C 2023;127:13021-33.
168. Wu Y, Wang Y, Huang D, et al. Direct quantification of oxygen vacancy on the TiO2 surface by 31P solid-state NMR. Chem Catal 2023;3:100556.
169. Chu Y, Yu Z, Zheng A, et al. Acidic strengths of Brønsted and lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. J Phys Chem C 2011;115:7660-7.
170. Hu Y, Guo B, Fu Y, et al. Facet-dependent acidic and catalytic properties of sulfated titania solid superacids. Chem Commun 2015;51:14219-22.
171. Zhang H, Yu H, Zheng A, Li S, Shen W, Deng F. Reactivity enhancement of 2-propanol photocatalysis on SO42-/TiO2: insights from solid-state NMR spectroscopy. Environ Sci Technol 2008;42:5316-21.
172. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 1994;98:13669-79.
173. Vamathevan V, Amal R, Beydoun D, Low G, Mcevoy S. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J Photoch Photobio A 2002;148:233-45.
174. He C, Yu Y, Hu X, Larbot A. Influence of silver doping on the photocatalytic activity of titania films. Appl Surf Sci 2002;200:239-47.
175. Jaegers NR, Wang Y, Hu JZ, Wachs IE. Impact of hydration on supported V2O5/TiO2 catalysts as explored by magnetic resonance spectroscopy. J Phys Chem C 2021;125:16766-75.
176. Stebbins JF. Aluminum substitution in rutile titanium dioxide: new constraints from high-resolution 27Al NMR. Chem Mater 2007;19:1862-9.
177. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 2007;107:2891-959.
178. Rumaiz AK, Woicik JC, Cockayne E, Lin HY, Jaffari GH, Shah SI. Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. Appl Phys Lett 2009;95:262111.
179. Cronemeyer DC. Infrared absorption of reduced rutile TiO2 single crystals. Phys Rev 1959;113:1222-6.
180. Tai Z, Sun G, Wang T, Li Z, Tai J. Netted C-doped TiO2 mesoporous nanostructure decorated by Cu nanoparticles for photocatalytic CO2 reduction. ACS Appl Nano Mater 2022;5:18070-9.
181. Dong Y, Luo X, Wang Y, et al. A robust novel 0D/2D MoS3 QDs/C-doped atomically thin TiO2(B) nanosheet composite for highly efficient photocatalytic H2 evolution. Appl Surf Sci 2022;599:153972.
182. Li Y, Ren Z, Gu M, Duan Y, Zhang W, Lv K. Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO2 nanofibers towards CO2 reduction. Appl Catal B Environ 2022;317:121773.
183. Shayegan Z, Haghighat F, Lee C. Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds. J Environ Chem Eng 2020;8:104162.
184. Yang Y, Liu L, Qi Q, et al. A low-cost and stable Fe2O3/C-TiO2 system design for highly efficient photocatalytic H2 production from seawater. Catal Commun 2020;143:106047.
185. Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z. Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: role of carbon doped TiO2 and anatase/rutile ratio. Catal Today 2020;348:277-89.
186. Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B Environ 2001;32:215-27.
187. Ohno T, Tsubota T, Nishijima K, Miyamoto Z. Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light. Chem Lett 2004;33:750-1.
188. Xu C, Killmeyer R, Gray ML, Khan SU. Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Appl Catal B Environ 2006;64:312-7.
189. Xu C, Shaban YA, Ingler WB, Khan SU. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting. Sol Energy Mater Sol Cells 2007;91:938-43.
190. Liu F, Feng N, Yang L, Wang Q, Xu J, Deng F. Enhanced photocatalytic performance of carbon-coated TiO2-x with surface-active carbon species. J Phys Chem C 2018;122:10948-55.
191. Chen C, Long M, Zeng H, et al. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J Mol Catal A Chem 2009;314:35-41.
192. Rockafellow EM, Fang X, Trewyn BG, Schmidt-rohr K, Jenks WS. Solid-state 13C NMR characterization of carbon-modified TiO2. Chem Mater 2009;21:1187-97.
193. Feng N, Lin H, Deng F, Ye J. Interfacial-bonding Ti–N–C boosts efficient photocatalytic H2 evolution in close coupling g-C3N4/TiO2. J Phys Chem C 2021;125:12012-8.
194. Feng G, Mao J, Sun T, et al. Nitrogen-doped titanium dioxide for selective photocatalytic oxidation of methane to oxygenates. ACS Appl Mater Interfaces 2024;16:4600-5.
195. Bhowmick S, Saini CP, Santra B, et al. Modulation of the work function of TiO2 nanotubes by nitrogen doping: implications for the photocatalytic degradation of dyes. ACS Appl Nano Mater 2023;6:50-60.
196. Chen C, Wu M, Yang C, et al. Electron-donating N-–Ti3+–Ov interfacial sites with high selectivity for the oxidation of primary C–H bonds. Cell Rep Phys Sci 2022;3:100936.
197. Kwon J, Choi K, Schreck M, Liu T, Tervoort E, Niederberger M. Gas-phase nitrogen doping of monolithic TiO2 nanoparticle-based aerogels for efficient visible light-driven photocatalytic H2 production. ACS Appl Mater Interfaces 2021;13:53691-701.
198. Liang M, Bai X, Yu F, Ma J. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res 2021;14:684-91.
199. Kong X, Peng Z, Jiang R, et al. Nanolayered heterostructures of N-doped TiO2 and N-doped carbon for hydrogen evolution. ACS Appl Nano Mater 2020;3:1373-81.
200. Reyes-garcia EA, Sun Y, Reyes-gil K, Raftery D. 15N solid state NMR and EPR characterization of N-doped TiO2 photocatalysts. J Phys Chem C 2007;111:2738-48.
201. Feng N, Zheng A, Wang Q, et al. Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 2011;115:2709-19.
202. Feng N, Wang Q, Zheng A, et al. Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc 2013;135:1607-16.
203. Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc 2004;126:4782-3.
204. Reyes-garcia EA, Sun Y, Raftery D. Solid-state characterization of the nuclear and electronic environments in a boron−fluoride co-doped TiO2 visible-light photocatalyst. J Phys Chem C 2007;111:17146-54.
205. Wu T, Xie Y, Yin L, Liu G, Cheng H. Switching photocatalytic H2 and O2 generation preferences of rutile TiO2 microspheres with dominant reactive facets by boron doping. J Phys Chem C 2015;119:84-9.
206. Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed Engl 2008;47:4516-20.
207. Gopal NO, Lo HH, Ke SC. Chemical state and environment of boron dopant in B,N-codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy. J Am Chem Soc 2008;130:2760-1.
208. In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. J Am Chem Soc 2007;129:13790-1.
209. Zaleska A, Sobczak JW, Grabowska E, Hupka J. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl Catal B Environ 2008;78:92-100.
210. Coudurier G, Auroux A, Vedrine JC, Farlee RD, Abrams L, Shannon RD. Properties of boron-substituted ZSM-5 and ZSM-11 zeolites. J Catal 1987;108:1-14.
211. de Ruiter R, Kentgens A, Grootendorst J, Jansen J, van Bekkum H. Calcination and deboronation of [B]-MFI single crystals. Zeolites 1993;13:128-38.
212. Dorn RW, Heintz PM, Hung I, et al. Atomic-level structure of mesoporous hexagonal boron nitride determined by high-resolution solid-state multinuclear magnetic resonance spectroscopy and density functional theory calculations. Chem Mater 2022;34:1649-65.
213. Mark LO, Dorn RW, Mcdermott WP, et al. Highly selective carbon-supported boron for oxidative dehydrogenation of propane. ChemCatChem 2021;13:3611-8.
214. Medek A, Harwood JS, Frydman L. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J Am Chem Soc 1995;117:12779-87.
215. Wang SH, Xu Z, Baltisberger JH, Bull LM, Stebbins JF, Pines A. Multiple-quantum magic-angle spinning and dynamic-angle spinning NMR spectroscopy of quadrupolar nuclei. Solid State Nucl Magn Reson 1997;8:1-16.
216. Smith ME, van Eck ERH. Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei. Prog Nucl Mag Res Sp 1999;34:159-201.
217. Dorn RW, Cendejas MC, Chen K, et al. Structure determination of boron-based oxidative dehydrogenation heterogeneous catalysts with ultra-high field 35.2 T 11B solid-state NMR spectroscopy. ACS Catal 2020;10:13852-66.
218. Sasaki J, Peterson N, Hoshino K. Tracer impurity diffusion in single-crystal rutile (TiO2-x). J Phys Chem Solids 1985;46:1267-83.
219. Bak T, Burg T, Kang S, et al. Charge transport in polycrystalline titanium dioxide☆. J Phys Chem Solids 2003;64:1089-95.
220. Gesenhues U. Al-doped TiO2 pigments: influence of doping on the photocatalytic degradation of alkyd resins. J Photoch Photobio A 2001;139:243-51.
221. Kotzamanidi S, Frontistis Z, Binas V, Kiriakidis G, Mantzavinos D. Solar photocatalytic degradation of propyl paraben in Al-doped TiO2 suspensions. Catal Today 2018;313:148-54.
222. Murashkina AA, Rudakova AV, Ryabchuk VK, et al. Influence of the dopant concentration on the photoelectrochemical behavior of Al-doped TiO2. J Phys Chem C 2018;122:7975-81.
223. Gionco C, Livraghi S, Maurelli S, et al. Al- and Ga-doped TiO2, ZrO2, and HfO2: the nature of O 2p trapped holes from a combined electron paramagnetic resonance (EPR) and density functional theory (DFT) study. Chem Mater 2015;27:3936-45.
224. Su CY, Wang LC, Liu WS, Wang CC, Perng TP. Photocatalysis and hydrogen evolution of Al- and Zn-doped TiO2 nanotubes fabricated by atomic layer deposition. ACS Appl Mater Interfaces 2018;10:33287-95.
225. Yang L, Feng N, Deng F. Aluminum-doped TiO2 with dominant {001} facets: microstructure and property evolution and photocatalytic activity. J Phys Chem C 2022;126:5555-63.
226. Xu J, Wang Q, Li S, Deng F. Solid-state NMR in zeolite catalysis. 1st edition. Singapore: Springer. 2019.