REFERENCES

1. Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC. Radiation from electrons in a synchrotron. Phys Rev 1947;71:829.

2. The circles of light. Nat Rev Mater 2018;3:281-2.

3. Ice GE, Budai JD, Pang JWL. The race to X-ray microbeam and nanobeam science. Science 2011;334:1234-9.

4. Zhang XW, Yan XJ, Zhou ZR, et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science 2010;328:240-3.

5. Kern J, Alonso-Mori R, Tran R, et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 2013;340:491-5.

6. Wu J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem Rev 2022;122:10821-59.

7. Velasco-Velez JJ, Wu CH, Pascal TA, et al. Interfacial water. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 2014;346:831-4.

8. Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy 2017;2:17031.

9. Kolb DM. Electrochemical surface science this manuscript is based on the Bonhoeffer-Eucken-Scheibe lectures of the Deutsche Bunsengesellschaft, given by the author at Erlangen, Berlin, and Leipzig in 1999/2000. Angew Chem Int Ed 2001;40:1162-81.

10. Brown MA, Goel A, Abbas Z. Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew Chem Int Ed Engl 2016;55:3790-4.

11. Axnanda S, Crumlin EJ, Mao B, et al. Using “Tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci Rep 2015;5:9788.

12. Favaro M, Jeong B, Ross PN, et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat Commun 2016;7:12695.

13. Strmcnik D, Kodama K, van der Vliet D, Greeley J, Stamenkovic VR, Marković NM. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 2009;1:466-72.

14. Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011;334:1256-60.

15. Goyal A, Koper MTM. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew Chem Int Ed Engl 2021;60:13452-62.

16. Shah AH, Zhang Z, Huang Z, et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat Catal 2022;5:923-33.

17. Li P, Jiang Y, Hu Y, et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat Catal 2022;5:900-11.

18. Lucas CA, Thompson P, Gründer Y, Markovic NM. The structure of the electrochemical double layer: Ag(111) in alkaline electrolyte. Electrochem Commun 2011;13:1205-8.

19. Sun Z, Yan W, Yao T, Liu Q, Xie Y, Wei S. XAFS in dilute magnetic semiconductors. Dalton Trans 2013;42:13779-801.

20. Huang J, Sementa L, Liu Z, et al. Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat Catal 2022;5:513-23.

21. Kang J, Qiu X, Hu Q, et al. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat Catal 2021;4:1050-8.

22. Bergmann A, Jones TE, Martinez Moreno E, et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat Catal 2018;1:711-9.

23. Jia Q, Ramaswamy N, Hafiz H, et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015;9:12496-505.

24. Velasco-Vélez JJ, Falling LJ, Bernsmeier D, et al. A comparative study of electrochemical cells for in situ x-ray spectroscopies in the soft and tender x-ray range. J Phys D Appl Phys 2021;54:124003.

25. Diercks JS, Herranz J, Ebner K, et al. Spectroscopy vs. electrochemistry: catalyst layer thickness effects on operando/in situ measurements. Angew Chem Int Ed Engl 2023;62:e202216633.

26. Zitolo A, Ranjbar-Sahraie N, Mineva T, et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat Commun 2017;8:957.

27. Hu J, Shang W, Xin C, et al. Uncovering dynamic edge-sites in atomic Co-N-C electrocatalyst for selective hydrogen peroxide production. Angew Chem Int Ed Engl 2023;62:e202304754.

28. Zhang M, de Respinis M, Frei H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 2014;6:362-7.

29. Dong JC, Zhang XG, Briega-Martos V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat Energy 2019;4:60-7.

30. Mefford JT, Akbashev AR, Kang M, et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 2021;593:67-73.

31. Saveleva VA, Ebner K, Ni L, et al. Potential-induced spin changes in Fe/N/C electrocatalysts assessed by in situ X-ray emission spectroscopy. Angew Chem Int Ed Engl 2021;60:11707-12.

32. Gallo E, Glatzel P. Valence to core X-ray emission spectroscopy. Adv Mater 2014;26:7730-46.

33. Cutsail GE III, DeBeer S. Challenges and opportunities for applications of advanced X-ray spectroscopy in catalysis research. ACS Catal 2022;12:5864-86.

34. Chen J, Finfrock YZ, Wang Z, Sham TK. Strain and ligand effects in Pt-Ni alloys studied by valence-to-core X-ray emission spectroscopy. Sci Rep 2021;11:13698.

35. Lancaster KM, Roemelt M, Ettenhuber P, et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 2011;334:974-7.

36. Pollock CJ, DeBeer S. Valence-to-core X-ray emission spectroscopy: a sensitive probe of the nature of a bound ligand. J Am Chem Soc 2011;133:5594-601.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/