REFERENCES

1. Tariq G, Sun H, Ali S. Environmental footprint impacts of green energies, green energy finance and green governance in G7 countries. Carbon Footprints 2024;3:5.

2. Dou H, Hao H. The greenhouse gas emissions reduction co-benefit of end-of-life electric vehicle battery treatment strategies. Carbon Footprints 2024;3:2.

3. Dong Q, Zhong C, Geng Y, Dong F, Chen W, Zhang Y. A bibliometric review of carbon footprint research. Carbon Footprints 2024;3:3.

4. Zhou Y, Zheng S. A co-simulated material-component-system-district framework for climate-adaption and sustainability transition. Renew Sustain Energy Rev 2024;192:114184.

5. Zhou Y, Zheng S, Lei J, Zi Y. A cross-scale modelling and decarbonisation quantification approach for navigating carbon neutrality pathways in China. Energy Convers Manage 2023;297:117733.

6. Zhou Y. Low-carbon transition in smart city with sustainable airport energy ecosystems and hydrogen-based renewable-grid-storage-flexibility. Energy Rev 2022;1:100001.

7. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Abd. Majid MZ. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 2015;43:843-62.

8. Cheng B, Lu K, Li J, Chen H, Luo X, Shafique M. Comprehensive assessment of embodied environmental impacts of buildings using normalized environmental impact factors. J Clean Prod 2022;334:130083.

9. Pan D, Yu X, Zhou Y. Cradle-to-grave lifecycle carbon footprint analysis and frontier decarbonization pathways of district buildings in subtropical Guangzhou, China. J Clean Prod 2023;416:137921.

10. Song A, Zhou Y. Advanced cycling ageing-driven circular economy with E-mobility-based energy sharing and lithium battery cascade utilisation in a district community. J Clean Prod 2023;415:137797.

11. Huang Z, Zhou H, Miao Z, Tang H, Lin B, Zhuang W. Life-cycle carbon emissions (LCCE) of buildings: implications, calculations, and reductions. Engineering 2024.

12. Fang Z, Yan J, Lu Q, et al. A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects. Appl Energy 2023;335:120768.

13. Zhou Y, Zheng S, Liu Z, et al. Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations: a state-of-the-art review. Renew Sustain Energy Rev 2020;130:109889.

14. Wang P, Liu Z, Zhang X, Hu M, Zhang L, Fan J. Adaptive dynamic building envelope integrated with phase change material to enhance the heat storage and release efficiency: a state-of-the-art review. Energy Build 2023;286:112928.

15. Zhou Y. Artificial neural network-based smart aerogel glazing in low-energy buildings: a state-of-the-art review. iScience 2021;24:103420.

16. Zhou Y, Zheng S. Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method. Energy 2020;193:116718.

17. Zheng X, Zhou Y. Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning. Energy 2024;288:129649.

18. Zhou L, Song A, Zhou Y. Electrification and hydrogenation on a PV-battery-hydrogen energy flexible community for carbon-neutral transformation with transient aging and collaboration operation. Energy Convers Manage 2024;300:117984.

19. Zhou Y. Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation. Renew Sustain Energy Rev 2022;162:112444.

20. Zhang X, Zhou Y. Waste-to-energy (W2E) for renewable-battery-FCEV-building multi-energy systems with combined thermal/power, absorption chiller and demand-side flexibility in subtropical climates. Energy Build 2024;307:113949.

21. Zhou Y. Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate. Renew Energy 2022;199:204-25.

22. Zhou Y, Zheng S, Zhang G. Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties. Renew Energy 2020;151:403-18.

23. Zheng X, Zhou Y. A three-dimensional unsteady numerical model on a novel aerogel-based PV/T-PCM system with dynamic heat-transfer mechanism and solar energy harvesting analysis. Appl Energy 2023;338:120899.

24. Zhou Y, Zheng S. Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling. Energy 2020;202:117747.

25. Li A, Yu B, Zhang Y, et al. The emission reduction potential and cost-effectiveness of low-GWP refrigerants in electric vehicle air conditionings. Carbon Footprints 2024;3:6.

26. Zhou Y. Climate change adaptation with energy resilience in energy districts - a state-of-the-art review. Energy Build 2023;279:112649.

27. Zhou Y, Dan Z, Yu X. Climate-adaptive resilience in district buildings and cross-regional energy sharing in Guangzhou-Shenzhen-Hong Kong Greater Bay Area. Energy Build 2024;308:114004.

28. Yu X, Pan D, Zhou Y. A Stackelberg game-based peer-to-peer energy trading market with energy management and pricing mechanism: a case study in Guangzhou. Solar Energy 2024;270:112388.

29. Chen J, Lu L, Gong Q. Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality. Appl Energy 2023;349:121679.

30. Casini M. Active dynamic windows for buildings: a review. Renew Energy 2018;119:923-34.

31. Zhang S, Wang K, Xu W, et al. Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region. Energy Policy 2021;159:112661.

32. Liu Y, Xue S, Guo X, et al. Towards the goal of zero-carbon building retrofitting with variant application degrees of low-carbon technologies: mitigation potential and cost-benefit analysis for a kindergarten in Beijing. J Clean Prod 2023;393:136316.

33. Cabeza, M Chàfer. Technological options and strategies towards zero energy buildings contributing to climate change mitigation: a systematic review. Energy Build 2020;219:110009.

34. Li H, Wang Z, Zhang B. Defects of the financial incentive policy for global zero carbon buildings: a game analysis of policy insights. Energy Build 2022;268:112167.

35. Sartori I, Napolitano A, Voss K. Net zero energy buildings: a consistent definition framework. Energy Build 2012;48:220-32.

36. Hernandez P, Kenny P. From net energy to zero energy buildings: defining life cycle zero energy buildings (LC-ZEB). Energy Build 2010;42:815-21.

37. Zhou Y. Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation. Renew Energy 2023;202:1324-41.

38. Zhou L, Zhou Y. Study on thermo-electric-hydrogen conversion mechanisms and synergistic operation on hydrogen fuel cell and electrochemical battery in energy flexible buildings. Energy Convers Manage 2023;277:116610.

39. Marszal A, Heiselberg P, Bourrelle J, et al. Zero energy building - a review of definitions and calculation methodologies. Energy Build 2011;43:971-9.

40. Shirinbakhsh M, Harvey LD. Net-zero energy buildings: The influence of definition on greenhouse gas emissions. Energy Build 2021;247:111118.

41. Song A, Zhou Y. A hierarchical control with thermal and electrical synergies on battery cycling ageing and energy flexibility in a multi-energy sharing network. Renew Energy 2023;212:1020-37.

42. Zhou Y. Worldwide carbon neutrality transition? Energy efficiency, renewable, carbon trading and advanced energy policies. Energy Rev 2023;2:100026.

43. Moschetti R, Brattebø H, Sparrevik M. Exploring the pathway from zero-energy to zero-emission building solutions: a case study of a Norwegian office building. Energy Build 2019;188-9:84-97.

44. Mytafides CK, Dimoudi A, Zoras S. Transformation of a university building into a zero energy building in Mediterranean climate. Energy Build 2017;155:98-114.

45. Takano A, Winter S, Hughes M, Linkosalmi L. Comparison of life cycle assessment databases: a case study on building assessment. Build Environ 2014;79:20-30.

46. Minunno R, O'grady T, Morrison GM, Gruner RL. Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments. Renew Sustain Energy Rev 2021;143:110935.

47. Ji S, Lee B, Yi MY. Building life-span prediction for life cycle assessment and life cycle cost using machine learning: a big data approach. Build Environ 2021;205:108267.

48. Lu K, Jiang X, Yu J, Tam VW, Skitmore M. Integration of life cycle assessment and life cycle cost using building information modeling: a critical review. J Clean Prod 2021;285:125438.

49. Llatas C, Soust-verdaguer B, Passer A. Implementing life cycle sustainability assessment during design stages in building information modelling: from systematic literature review to a methodological approach. Build Environ 2020;182:107164.

50. Xu X, Mumford T, Zou PX. Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. Energy Build 2021;231:110496.

51. Guo S, Yan D, Hu S, Zhang Y. Modelling building energy consumption in China under different future scenarios. Energy 2021;214:119063.

52. Zhou Y, Zheng S. Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities. Appl Energy 2020;262:114416.

53. Li J, Li S, Wu F. Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renew Energy 2020;155:456-68.

54. Too J, Ejohwomu OA, Hui FK, Duffield C, Bukoye OT, Edwards DJ. Framework for standardising carbon neutrality in building projects. J Clean Prod 2022;373:133858.

55. Eleftheriadis S, Duffour P, Mumovic D. BIM-embedded life cycle carbon assessment of RC buildings using optimised structural design alternatives. Energy Build 2018;173:587-600.

56. Li X, Xie W, Xu L, Li L, Jim C, Wei T. Holistic life-cycle accounting of carbon emissions of prefabricated buildings using LCA and BIM. Energy Build 2022;266:112136.

57. Li X, Lai J, Ma C, Wang C. Using BIM to research carbon footprint during the materialization phase of prefabricated concrete buildings: a China study. J Clean Prod 2021;279:123454.

58. Peng C. Calculation of a building's life cycle carbon emissions based on Ecotect and building information modeling. J Clean Prod 2016;112:453-65.

59. Schwartz Y, Raslan R, Mumovic D. Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: a building refurbishment case study. Energy 2016;97:58-68.

60. Frischknecht R, Rebitzer G. The ecoinvent database system: a comprehensive web-based LCA database. J Clean Prod 2005;13:1337-43.

61. PE INTERNATIONAL. GaBi database. Available from: https://ghgprotocol.org/gabi-databases [Last accessed on 30 Apr 2024].

62. Ecoinvent Centre. Ecoinvent LCI database. Available from: https://simapro.com/products/ecoinvent/ [Last accessed on 30 Apr 2024].

63. ELCD. European Platform on LCA|EPLCA. European reference life-cycle database (ELCD 3.1). Available from: http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml [Last accessed on 30 Apr 2024].

64. PlasticsEurope. Ecoprofiles. Available from: https://www.ifeu.de/en/topics/industry-and-products/ecoprofiles [Last accessed on 30 Apr 2024].

65. Athena SMI. Athena database content. Available from: http://www.calculatelca.com/wp-content/uploads/2012/10/LCI_Databases_Products.pdf [Last accessed on 29 Apr 2024].

66. U.S. Life cycle inventory database. Avaliable from: https://www.nrel.gov/analysis/lci.html [Last accessed on 30 Apr 2024].

67. ADEME. Base carbone. Available from: http://www.basecarbone.fr/ [Last accessed on 29 Apr 2024].

68. ITeC. BEDEC - banco construcción 2024-01. Available from: http://www.itec.es/nouBedec.e/bedec.aspx [Last accessed on 29 Apr 2024].

69. CPM. CPM LCA database. Available from: https://www.lifecyclecenter.se/projects/cpm-lca-database/ [Last accessed on 30 Apr 2024].

70. ProBas. ProBas database. Materials and products. Available from: http://www.probas.umweltbundesamt.de/php/prozesskategorien.php?topic_id=8589934592 [Last accessed on 29 Apr 2024].

71. Roberts M, Allen S, Coley D. Life cycle assessment in the building design process - a systematic literature review. Build Environ 2020;185:107274.

72. IEA. CO2 emissions reductions in China, 2015- 2060 by scenario IEA, Paris (2022) Available from: https://www.iea.org/data-and-statistics/charts/co2-emissions-reductions-in-china-2015-2060-by-scenario [Last accessed on 29 Apr 2024].

73. Kudasheva A, Kamiya T, Hirota Y, Ito A. Dehumidification of air using liquid membranes with ionic liquids. J Membrane Sci 2016;499:379-85.

74. Zheng X, Zhang Y, Wan T, Chen K. Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers. Energy 2023;281:128293.

75. Meggers F, Guo H, Teitelbaum E, et al. The thermoheliodome - “Air conditioning” without conditioning the air, using radiant cooling and indirect evaporation. Energy Build 2017;157:11-9.

76. Shen L, Xiao F, Chen H, Wang S. Investigation of a novel thermoelectric radiant air-conditioning system. Energy Build 2013;59:123-32.

77. Zhou Y, Zheng S. Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization. Renew Energy 2020;153:375-91.

78. Dong B, Prakash V, Feng F, O'neill Z. A review of smart building sensing system for better indoor environment control. Energy Build 2019;199:29-46.

79. Bahaj A, Myers L, James P. Urban energy generation: influence of micro-wind turbine output on electricity consumption in buildings. Energy Build 2007;39:154-65.

80. Bing J, Caro LG, Talathi HP, Chang NL, Mckenzie DR, Ho-baillie AW. Perovskite solar cells for building integrated photovoltaics⁠ - glazing applications. Joule 2022;6:1446-74.

81. Cuce PM, Riffat S. A comprehensive review of heat recovery systems for building applications. Renew Sustain Energy Rev 2015;47:665-82.

82. Yu M, Li S, Zhang X, Zhao Y. Techno-economic analysis of air source heat pump combined with latent thermal energy storage applied for space heating in China. Appl Therm Eng 2021;185:116434.

83. Jung Y, Oh J, Han U, Lee H. A comprehensive review of thermal potential and heat utilization for water source heat pump systems. Energy Build 2022;266:112124.

84. Liu L, Fu L, Jiang Y. A new “wireless on-off control” technique for adjusting and metering household heat in district heating system. Appl Therm Eng 2012;36:202-9.

85. Omer A. Ground-source heat pumps systems and applications. Renew Sustain Energy Rev 2008;12:344-71.

86. Li T, Zhai Y, He S, et al. A radiative cooling structural material. Science 2019;364:760-3.

87. Zhou J, Hsieh Y. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 2020;68:104305.

88. Kuznik F, David D, Johannes K, Roux J. A review on phase change materials integrated in building walls. Renew Sustain Energy Rev 2011;15:379-91.

89. Liu J, Tang H, Jiang C, et al. Micro-nano porous structure for efficient daytime radiative sky cooling. Adv Funct Mater 2022;32:2206962.

90. Jahid M, Wang J, Zhang E, Duan Q, Feng Y. Energy savings potential of reversible photothermal windows with near infrared-selective plasmonic nanofilms. Energy Convers Manage 2022;263:115705.

91. Liu Z, Zhou Q, Tian Z, He BJ, Jin G. A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China. Renew Sustain Energy Rev 2019;114:109314.

92. Li K, Ma M, Xiang X, et al. Carbon reduction in commercial building operations: a provincial retrospection in China. Appl Energy 2022;306:118098.

93. Lu Y, Cui P, Li D. Carbon emissions and policies in China’s building and construction industry: evidence from 1994 to 2012. Build Environ 2016;95:94-103.

94. Zhou N, Khanna N, Feng W, Ke J, Levine M. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat Energy 2018;3:978-84.

95. Ma M, Ma X, Cai W, Cai W. Low carbon roadmap of residential building sector in China: historical mitigation and prospective peak. Appl Energy 2020;273:115247.

96. Yang T, Pan Y, Yang Y, et al. CO2 emissions in China's building sector through 2050: a scenario analysis based on a bottom-up model. Energy 2017;128:208-23.

97. Zhang X, Wang F. Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Build Environ 2015;86:89-97.

98. Wang T, Foliente G, Song X, Xue J, Fang D. Implications and future direction of greenhouse gas emission mitigation policies in the building sector of China. Renew Sustain Energy Rev 2014;31:520-30.

99. Lin B, Liu H. CO2 emissions of China’s commercial and residential buildings: evidence and reduction policy. Build Environ 2015;92:418-31.

100. Wu W, Skye HM. Residential net-zero energy buildings: review and perspective. Renew Sustain Energy Rev 2021;142:110859.

101. Deng S, Wang R, Dai Y. How to evaluate performance of net zero energy building - a literature research. Energy 2014;71:1-16.

102. Onat NC, Kucukvar M. Carbon footprint of construction industry: a global review and supply chain analysis. Renew Sustain Energy Rev 2020;124:109783.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/