REFERENCES
1. Kennedy H, Beggins J, Duarte CM, et al. Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochem Cy 2010;24:GB4026.
2. Herr D, Landis E. Coastal blue carbon ecosystems: opportunities for nationally determined contributions. Gland, Switzerland; Washington DC, USA: IUCN, The Nature Conservancy; 2016, 28p. Available from: https://www.unep.org/resources/policy-and-strategy/coastal-blue-carbon-ecosystems-opportunities-nationally-determined [Last accessed on 26 Sep 2023].
3. Hejnowicz AP, Kennedy H, Rudd MA, Huxham MR. Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes. Front Mar Sci 2015;2:32.
4. Johannessen SC, Macdonald RW. Geoengineering with seagrasses: is credit due where credit is given? Environ Res Lett 2016;11:113001.
5. Williamson P, Gattuso JP. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness. Front Climate 2022;4:853666.
6. Anderson CM, DeFries RS, Litterman R, et al. Natural climate solutions are not enough. Science 2019;363:933-4.
7. Seddon N, Smith A, Smith P, et al. Getting the message right on nature-based solutions to climate change. Glob Chang Biol 2021;27:1518-46.
8. IPCC. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories. In Hiraishi T, Krug T, Tanabe K, editors. Switzerland: Intergovernmental Panel on Climate Change; 2014. Available from: https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/ [Last accessed on 26 Sep 2023].
9. Arias-ortiz A, Serrano O, Masqué P, et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat Clim Chang 2018;8:338-44.
10. Lovelock CE, Reef R. Variable impacts of climate change on blue carbon. One Earth 2020;3:195-211.
11. Lafratta A, Serrano O, Masqué P, et al. Challenges to select suitable habitats and demonstrate ‘additionality’ in Blue Carbon projects: a seagrass case study. Ocean Coast Manag 2020;197:105295.
12. Leiva-Dueñas C, Graversen AEL, Banta GT, et al. Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia. Limnol Oceanogr 2023;68:631-48.
13. Smeaton C, Barlow NLM, Austin WEN. Coring and compaction: best practice in blue carbon stock and burial estimations. Geoderma 2020;364:114180.
14. Robbins J, Krezoski J, Mozley S. Radioactivity in sediments of the Great Lakes: post-depositional redistribution by deposit-feeding organisms. Earth Planet Sci Lett 1977;36:325-33.
15. Carpenter R, Peterson M, Bennett J. 210Pb-derived sediment accumulation and mixing rates for the greater Puget Sound region. Mar Geol 1985;64:291-312.
16. Lavelle J, Massoth G, Crecelius E. Accumulation rates of recent sediments in puget sound, Washington. Mar Geol 1986;72:59-70.
17. Silverberg N, Nguyen HV, Delibrias G, et al. Radionuclide profiles, sedimentation rates, and bioturbation in modern sediments of the Laurentian trough, gulf-of-st-lawrence. Oceanologica Acta 1986;9:285-90. Available from: https://archimer.ifremer.fr/doc/00110/22116/ [Last accessed on 26 Sep 2023]
18. Hedges JI, Keil RG. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 1995;49:81-115.
19. Boudreau BP. Is burial velocity a master parameter for bioturbation? Geochim Cosmochim Acta 1994;58:1243-9.
20. Marbà N, Arias-ortiz A, Masqué P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 2015;103:296-302.
21. Serrano O, Ruhon R, Lavery PS, et al. Impact of mooring activities on carbon stocks in seagrass meadows. Sci Rep 2016;6:23193.
22. Guinasso Jr NL, Schink DR. Quantitative estimates of biological mixing rates in abyssal sediments. J Geophys Res 1975;80:3032-43.
23. Johannessen SC, Macdonald RW. There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores. Mar Pollut Bull 2012;64:675-8.
24. CEC. Greenhouse gas offset methodology criteria for tidal wetland conservation. Montreal, Canada: Commission for Environmental Cooperation; 2014, 36p. Available from: http://www.cec.org/files/documents/publications/11597-greenhouse-gas-offset-methodology-criteria-tidal-wetland-conservation-en.pdf [Last accessed on 26 Sep 2023].
25. Appleby PG, Oldfieldz F. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 1983;103:29-35.
26. Thomson ACG, Trevathan-Tackett SM, Maher DT, Ralph PJ, Macreadie PI. Bioturbator-stimulated loss of seagrass sediment carbon stocks. Limnol Oceanogr 2019;64:342-56.
27. Stolpovsky K, Dale AW, Wallmann K. Toward a parameterization of global-scale organic carbon mineralization kinetics in surface marine sediments. Global Biogeochem Cy 2015;29:812-29.
28. Greiner JT, McGlathery KJ, Gunnell J, McKee BA. Seagrass restoration enhances "blue carbon" sequestration in coastal waters. PLoS One 2013;8:e72469.
29. Krause JR, Hinojosa-Corona A, Gray AB, et al. Beyond habitat boundaries: organic matter cycling requires a system-wide approach for accurate blue carbon accounting. Limnol Oceanogr 2022;67:S6-18.
30. Gallagher JB, Zhang K, Chuan CH. A Re-evaluation of wetland carbon sink mitigation concepts and measurements: a diagenetic solution. Wetlands 2022;42:23.
31. Emmer I, von Unger M, Needelman B, Crooks S, Emmett-Mattox S. Coastal blue carbon in practice: manual for using the vcs methodology for tidal wetland and seagrass restoration VM0033. In: Simpson S, editor, Arlington: restore America’s estuaries, Silvestrum; 2015, p. 82. Available from: https://estuaries.org/wp-content/uploads/2018/08/rae-coastal-blue-carbon-methodology-web.pdf [Last accessed on 27 Sep 2023]
32. Gullström M, Lyimo LD, Dahl M, et al. Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant-sediment processes, and landscape context: insights from the western indian ocean. Ecosystems 2018;21:551-66.
33. Frankignoulle M, Canon C, Gattuso J. Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 1994;39:458-62.
34. Saderne V, Geraldi NR, Macreadie PI, et al. Role of carbonate burial in blue carbon budgets. Nat Commun 2019;10:1106.
35. Robbins JA. Geochemical and geophysical applications of radioactive lead. In: the biogeochemistry of lead in the environment. Amsterdam, The Netherlands: Elsevier/North-Holland Biomedical Press; 1978. pp. 285-393.
36. Dinn PM, Johannessen SC, Macdonald RW, Lowe CJ, Whiticar MJ. Effect of receiving environment on the transport and fate of polybrominated diphenyl ethers near two submarine municipal outfalls. Environ Toxicol Chem 2012;31:566-73.
37. Spooner A. Blue carbon sequestration potential in Zostera marina eelgrass beds of the K'omoks Estuary, British Columbia. Master Thesis, Royal Roads University; 2016. Available from: http://hdl.handle.net/10170/916 [Last accessed on 26 Sep 2023].
38. Geraldi NR, Ortega A, Serrano O, et al. Fingerprinting blue carbon: rationale and tools to determine the source of organic carbon in marine depositional environments. Front Mar Sci 2019;6:263.
39. Duarte CM, Delgado-Huertas A, Anton A, et al. Stable isotope (δ13C, δ15N, δ18O, δD) composition and nutrient concentration of red sea primary producers. Front Mar Sci 2018;5:298.
40. Van Dam BR, Zeller MA, Lopes C, et al. Calcification-driven CO2 emissions exceed “Blue Carbon” sequestration in a carbonate seagrass meadow. Sci Adv 2021;7:eabj1372.