REFERENCES

1. Ali S, Giurco D, Arndt N, et al. Mineral supply for sustainable development requires resource governance. Nature 2017;543:367-72.

2. Shao L, Zhang H. The impact of oil price on the clean energy metal prices: a multi-scale perspective. Resour Policy 2020;68:101730.

3. Shao L, Zhang H, Chen J, Zhu X. Effect of oil price uncertainty on clean energy metal stocks in China: evidence from a nonparametric causality-in-quantiles approach. Int Rev Econ Finance 2021;73:407-19.

4. Graedel T. On the future availability of the energy metals. Annu Rev Mater Res 2011;41:323-35.

5. Grandell L, Lehtilä A, Kivinen M, Koljonen T, Kihlman S, Lauri LS. Role of critical metals in the future markets of clean energy technologies. Renew Energy 2016;95:53-62.

6. IEA. An energy sector roadmap to carbon neutrality in China 2021. Available from: https://www.oecd-ilibrary.org/energy/an-energy-sector-roadmap-to-carbon-neutrality-in-china_5f517ddb-en [Last accessed on 10 August 2023].

7. Zhang L, Chen Z, Yang C, Xu Z. Global supply risk assessment of the metals used in clean energy technologies. J Clean Prod 2022;331:129602.

8. Wang P, Chen L, Ge J, Cai W, Chen W. Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition. Appl Energy 2019;253:113612.

9. Wang P, Wang H, Chen W, Pauliuk S. Carbon neutrality needs a circular metal-energy nexus. Fundam Res 2022;2:392-5.

10. Ren K, Tang X, Wang P, Willerström J, Höök M. Bridging energy and metal sustainability: insights from China’s wind power development up to 2050. Energy 2021;227:120524.

11. Tang C, Sprecher B, Tukker A, Mogollón JM. The impact of climate policy implementation on lithium, cobalt and nickel demand: the case of the Dutch automotive sector up to 2040. Resour Policy 2021;74:102351.

12. Nassar NT, Wilburn DR, Goonan TG. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various clean power plan scenarios. Appl Energy 2016;183:1209-26.

13. Wu J, Yang J, Ma L, Li Z, Shen X. A system analysis of the development strategy of iron ore in China. Resour Policy 2016;48:32-40.

14. Liu QY, Wang AJ, Chen QS. Analysis for the global demand of energy in the next 20 years. Adv Mater Res 2013;734-7:1719-23.

15. Li Y, Wang AJ, Chen QS, Liu QY. Influencing factors of chinese aluminium resources demand in the next 20 years. Adv Mater Res 2013;734-7:122-8.

16. Mermer C, Şengül H. Addressing potential resource scarcity for boron mineral: a system dynamics perspective. J Clean Prod 2020;270:122192.

17. Sverdrup HU, Ragnarsdottir KV. A system dynamics model for platinum group metal supply, market price, depletion of extractable amounts, ore grade, recycling and stocks-in-use. Resour Conserv Recycl 2016;114:130-52.

18. Ciacci L, Fishman T, Elshkaki A, Graedel T, Vassura I, Passarini F. Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. Glob Environ Chang 2020;63:102093.

19. Schipper BW, Lin H, Meloni MA, Wansleeben K, Heijungs R, van der Voet E. Estimating global copper demand until 2100 with regression and stock dynamics. Resour Conserv Recycl 2018;132:28-36.

20. Elshkaki A, Graedel T. Dysprosium, the balance problem, and wind power technology. Appl Energy 2014;136:548-59.

21. Dong D, Tukker A, Van der Voet E. Modeling copper demand in China up to 2050: a business-as-usual scenario based on dynamic stock and flow analysis. J Ind Ecol 2019;23:1363-80.

22. Krausmann F, Wiedenhofer D, Lauk C, et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc Natl Acad Sci USA 2017;114:1880-5.

23. Wiedenhofer D, Steinberger JK, Eisenmenger N, Haas W. Maintenance and expansion: modeling material stocks and flows for residential buildings and transportation networks in the EU25. J Ind Ecol 2015;19:538-51.

24. Tokimatsu K, Wachtmeister H, Mclellan B, et al. Energy modeling approach to the global energy-mineral nexus: a first look at metal requirements and the 2 °C target. Appl Energy 2017;207:494-509.

25. Elshkaki A, Shen L. Energy-material nexus: the impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications. Energy 2019;180:903-17.

26. Habib K, Hansdóttir ST, Habib H. Critical metals for electromobility: global demand scenarios for passenger vehicles, 2015-2050. Resour Conserv Recycl 2020;154:104603.

27. Pehlken A, Albach S, Vogt T. Is there a resource constraint related to lithium ion batteries in cars? Int J Life Cycle Assess 2017;22:40-53.

28. Hao H, Geng Y, Tate JE, et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat Commun 2019;10:5398.

29. Li X, Ge J, Chen W, Wang P. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018-2030. Resour Conserv Recycl 2019;145:322-31.

30. Wang P, Zhao S, Dai T, et al. Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis. Renew Sustain Energy Rev 2022;161:112367.

31. Tong X, Dai H, Lu P, Zhang A, Ma T. Saving global platinum demand while achieving carbon neutrality in the passenger transport sector: linking material flow analysis with integrated assessment model. Resour Conserv Recycl 2022;179:106110.

32. Yang J, Yu Y, Ma T, Zhang C, Wang Q. Evolution of energy and metal demand driven by industrial revolutions and its trend analysis. Chin J Popul Resour Environ 2021;19:256-64.

33. Watari T, Nansai K, Nakajima K. Major metals demand, supply, and environmental impacts to 2100: a critical review. Resour Conserv Recycl 2021;164:105107.

34. Qiao D, Wang G, Gao T, Wen B, Dai T. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010-2050. Sci Total Environ 2021;764:142835.

35. Mo J, Jeon W. The impact of electric vehicle demand and battery recycling on price dynamics of lithium-ion battery cathode materials: a vector error correction model (VECM) analysis. Sustainability 2018;10:2870.

36. Shao L, Kou W, Zhang H. The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network. Resour Policy 2022;76:102550.

37. Shao L, Wang Z, Lan T. Formation mechanism and countermeasures of China’s new energy vehicle industry shakeouts. Resour Sci 2022;44:1316-30.

38. Jones B, Elliott RJR, Nguyen-Tien V. The EV revolution: the road ahead for critical raw materials demand. Appl Energy 2020;280:115072.

39. Xu C, Dai Q, Gaines L, Hu M, Tukker A, Steubing B. Future material demand for automotive lithium-based batteries. Commun Mater 2020;1:99.

40. Maisel F, Neef C, Marscheider-weidemann F, Nissen NF. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour Conserv Recycl 2023;192:106920.

41. Northey SA, Mudd GM, Werner TT. Unresolved complexity in assessments of mineral resource depletion and availability. Nat Resour Res 2018;27:241-55.

42. West J. Decreasing metal ore grades: are they really being driven by the depletion of high-grade deposits? J Ind Ecol 2011;15:165-8.

43. Northey S, Mohr S, Mudd G, Weng Z, Giurco D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl 2014;83:190-201.

44. Luo X, Pan L, Yang J. Mineral resource constraints for China’s clean energy development under carbon peaking and carbon neutrality targets: quantitative evaluation and scenario analysis. Energies 2022;15:7029.

45. Zahoor Z, Khan I, Hou F. Clean energy investment and financial development as determinants of environment and sustainable economic growth: evidence from China. Environ Sci Pollut Res Int 2022;29:16006-16.

46. Christmann P. Towards a more equitable use of mineral resources. Nat Resour Res 2018;27:159-77.

47. Ali HF, Ghoneim SM. Satellite-based silica mapping as an essential mineral for clean energy transition: Remote sensing mineral exploration as a climate change adaptation approach. J Afr Earth Sci 2022;196:104683.

48. Burchart-Korol D, Fugiel A, Czaplicka-Kolarz K, Turek M. Model of environmental life cycle assessment for coal mining operations. Sci Total Environ 2016;562:61-72.

49. Habib K, Hamelin L, Wenzel H. A dynamic perspective of the geopolitical supply risk of metals. J Clean Prod 2016;133:850-8.

50. Dogan E, Majeed MT, Luni T. Analyzing the impacts of geopolitical risk and economic uncertainty on natural resources rents. Resour Policy 2021;72:102056.

51. Sarkis J, Cohen MJ, Dewick P, Schröder P. A brave new world: lessons from the COVID-19 pandemic for transitioning to sustainable supply and production. Resour Conserv Recycl 2020;159:104894.

52. Barnhart CJ, Benson SM. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environ Sci 2013;6:1083-92.

53. Bartlett AA. A depletion protocol for non-renewable natural resources: Australia as an example. Nat Resour Res 2007;15:151-64.

54. Valero A, Valero A. Physical geonomics: combining the exergy and hubbert peak analysis for predicting mineral resources depletion. Resour Conserv Recycl 2010;54:1074-83.

55. Scholz RW, Ulrich AE, Eilittä M, Roy A. Sustainable use of phosphorus: a finite resource. Sci Total Environ 2013;461-2:799-803.

56. Wang J, Jiang H, Zhou Q, Wu J, Qin S. China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model. Renew Sustain Energy Rev 2016;53:1149-67.

57. Xu D, Zhu Y. A copula-hubbert model for Co(By)-product minerals. Nat Resour Res 2020;29:3069-78.

58. Wang J, Ju Y, Wang M, Li X. Scenario analysis of the recycled copper supply in China considering the recycling efficiency rate and waste import regulations. Resour Conserv Recycl 2019;146:580-9.

59. Castillo E, Eggert R. Reconciling diverging views on mineral depletion: a modified cumulative availability curve applied to copper resources. Resour Conserv Recycl 2020;161:104896.

60. Jordan BW, Eggert RG, Dixon BW, Carlsen BW. Thorium: crustal abundance, joint production, and economic availability. Resour Policy 2015;44:81-93.

61. Yaksic A, Tilton JE. Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium. Resour Policy 2009;34:185-94.

62. Bustamante ML, Gaustad G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: a case study of tellurium use in thin film photovoltaics. Appl Energy 2014;123:397-414.

63. Chen F, Tiwari S, Mohammed KS, Huo W, Jamróz P. Minerals resource rent responses to economic performance, greener energy, and environmental policy in China: combination of ML and ANN outputs. Resour Policy 2023;81:103307.

64. Jiang L, Jiang H. Analysis of predictions considering mineral prices, residential energy, and environmental risk: Evidence from the USA in COP 26 perspective. Resour Policy 2023;82:103431.

65. Islam M, Saidur R, Rahim N. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy 2011;36:985-92.

66. Wang X, Lei Y, Ge J, Wu S. Production forecast of China’s rare earths based on the Generalized Weng model and policy recommendations. Resour Policy 2015;43:11-8.

67. Ioannidis A, Chalvatzis KJ, Li X, Notton G, Stephanides P. The case for islands’ energy vulnerability: electricity supply diversity in 44 global islands. Renew Energy 2019;143:440-52.

68. Geissler B, Mew MC, Steiner G. Phosphate supply security for importing countries: developments and the current situation. Sci Total Environ 2019;677:511-23.

69. Mohsin M, Zhou P, Iqbal N, Shah S. Assessing oil supply security of South Asia. Energy 2018;155:438-47.

70. Yuwei L. The principle and methodology of mineral availability analysis. Nat Res Econ China 2015;28:8-13.

71. Werner T, Bebbington A, Gregory G. Assessing impacts of mining: recent contributions from GIS and remote sensing. Extr Ind Soc 2019;6:993-1012.

72. Cui C, Wang B, Zhao Y, Wang Q, Sun Z. China’s regional sustainability assessment on mineral resources: results from an improved analytic hierarchy process-based normal cloud model. J Clean Prod 2019;210:105-20.

73. Riddle M, Macal CM, Conzelmann G, Combs TE, Bauer D, Fields F. Global critical materials markets: an agent-based modeling approach. Res Policy 2015;45:307-21.

74. Shao L, Lan T. Review of the by- product critical minerals resource security research and prospects. Resour Sci 2020;42:1452-63.

75. Shao L, Jin S. Resilience assessment of the lithium supply chain in China under impact of new energy vehicles and supply interruption. J Clean Prod 2020;252:119624.

76. Olivetti EA, Ceder G, Gaustad GG, Fu X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 2017;1:229-43.

77. Calisaya-azpilcueta D, Herrera-leon S, Lucay FA, Cisternas LA. Assessment of the supply chain under uncertainty: the case of lithium. Minerals 2020;10:604.

78. Fu XK, Beatty DN, Gaustad GG, et al. Perspectives on cobalt supply through 2030 in the face of changing demand. Environ Sci Technol 2020;54:2985-93.

79. Elshkaki A, Graedel T, Ciacci L, Reck BK. Copper demand, supply, and associated energy use to 2050. Glob Environ Chang 2016;39:305-15.

80. Ma Y, Sha J, Yan J, et al. Safety assessment and countermeasures of nickel resource supply in China. Resour Sci 2019;41:1317-28.

81. Yihao S. Supply security evaluation and security strategy study of cobalt resources in China. 2019.

82. Wang D, Weiqiang C. Trade and supply security of bauxite in China. Resour Sci 2018;40:498-506.

83. Wang D, Wang W, Chen W. Supply security of strategic metal ores in China. Res Ind 2019;21:22-30.

84. Lijun F. Research on safety evaluation of copper resources supply in China. 2019.

85. Achzet B, Helbig C. How to evaluate raw material supply risks - an overview. Resour Policy 2013;38:435-47.

86. Jasiński D, Cinelli M, Dias LC, Meredith J, Kirwan K. Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis. Resour Policy 2018;58:150-8.

87. Zhang L, Bai W, Yu J, et al. Critical mineral security in china: an evaluation based on hybrid MCDM methods. Sustainability 2018;10:4114.

88. Zhou Y, Li J, Wang G, Chen S, Xing W, Li T. Assessing the short-to medium-term supply risks of clean energy minerals for China. J Clean Prod 2019;215:217-25.

89. Zhou N, Wu Q, Hu X, Zhu Y, Su H, Xue S. Synthesized indicator for evaluating security of strategic minerals in China: a case study of lithium. Resour Policy 2020;69:101915.

90. Yu S, Duan H, Cheng J. An evaluation of the supply risk for China’s strategic metallic mineral resources. Resour Policy 2021;70:101891.

91. Yao L, Chang Y. Energy security in China: a quantitative analysis and policy implications. Energy Policy 2014;67:595-604.

92. Song Y, Zhang M, Sun R. Using a new aggregated indicator to evaluate China’s energy security. Energy Policy 2019;132:167-74.

93. Liao Q, Sun M. Security evaluation of lithium resources supply in china under the background of “anti-globalization”. Mining 2022;42:179-86.

94. Klimek P, Obersteiner M, Thurner S. Systemic trade risk of critical resources. Sci Adv 2015;1:e1500522.

95. Hao H, Geng Y, Tate JE, et al. Securing platinum-group metals for transport low-carbon transition. One Earth 2019;1:117-25.

96. Chen G, Kong R, Wang Y. Research on the evolution of lithium trade communities based on the complex network. Physica A 2020;540:123002.

97. Wang C, Huang X, Lim MK, Tseng M, Ghadimi P. Mapping the structural evolution in the global scrap copper trade network. J Clean Prod 2020;275:122934.

98. Zhao Y, Gao X, An H, Xi X, Sun Q, Jiang M. The effect of the mined cobalt trade dependence network’s structure on trade price. Resour Policy 2020;65:101589.

99. Ge J, Wang X, Guan Q, Li W, Zhu H, Yao M. World rare earths trade network: patterns, relations and role characteristics. Resour Policy 2016;50:119-30.

100. Shao L, Hu J, Zhang H. Evolution of global lithium competition network pattern and its influence factors. Resour Policy 2021;74:102353.

101. Huang J, Ding Q, Wang Y, Hong H, Zhang H. The evolution and influencing factors of international tungsten competition from the industrial chain perspective. Resour Policy 2021;73:102185.

102. Gulley AL, Nassar NT, Xun S. China, the United States, and competition for resources that enable emerging technologies. Proc Natl Acad Sci USA 2018;115:4111-5.

103. Liu D, Liu JC, Huang H, Sun K. Analysis of the international polysilicon trade network. Resour Conserv Rec 2019;142:122-30.

104. Yu G, Xiong C, Xiao J, He D, Peng G. Evolutionary analysis of the global rare earth trade networks. Appl Math Comput 2022;430:127249.

105. Wang X, Li H, Yao H, Zhu D, Liu N. Simulation analysis of the spread of a supply crisis based on the global natural graphite trade network. Resour Policy 2018;59:200-9.

106. Sun X, Shi Q, Hao X. Supply crisis propagation in the global cobalt trade network. Resour Conserv Rec 2022;179:106035.

107. Shiquan D, Deyi X. The security of critical mineral supply chains. Miner Econ 2022.

108. Galos K, Lewicka E, Burkowicz A, et al. Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland. Resour Policy 2021;70:101900.

109. Gulley AL, Mccullough EA, Shedd KB. China’s domestic and foreign influence in the global cobalt supply chain. Resour Policy 2019;62:317-23.

110. Umar Z, Polat O, Choi S, Teplova T. The impact of the Russia-Ukraine conflict on the connectedness of financial markets. Finance Res Lett 2022;48:102976.

111. European Commission. Press statement by President von der Leyen on a new package of restrictive measures against Russia 2022. Available from: https://www.eeas.europa.eu/delegations/ukraine/press-statement-president-von-der-leyen-new-package-restrictive-measures_en?s=232 [Last accessed on 10 August 2023].

112. Li Y, Chen B, Li C, Li Z, Chen G. Energy perspective of Sino-US trade imbalance in global supply chains. Energy Econ 2020;92:104959.

113. Chen T, Lin C, Shao X. Globalization and U.S. corporate tax policies: evidence from import competition. SSRN J 2021.

114. Hanai K. Conflict minerals regulation and mechanism changes in the DR Congo. Resour Policy 2021;74:102394.

115. Koch D, Burlyuk O. Bounded policy learning? EU efforts to anticipate unintended consequences in conflict minerals legislation. J Eur Public Policy 2020;27:1441-62.

116. Camba A. The unintended consequences of national regulations: large-scale-small-scale relations in Philippine and Indonesian nickel mining. Resour Policy 2021;74:102213.

117. Dong X, An F, Dong Z, et al. Optimization of the international nickel ore trade network. Resour Policy 2021;70:101978.

118. Shalom Z. Israel’s Foreign minister eban meets president de gaulle and prime minister wilson on the eve of the six day war. Isr Aff 2008;14:277-87.

119. Wang B, Wang L, Zhong S, Xiang N, Qu Q. Assessing the supply risk of geopolitics on critical minerals for energy storage technology in China. Front Energy Res 2023;10:1032000.

120. Sweidan OD. The geopolitical risk effect on the US renewable energy deployment. J Clean Prod 2021;293:126189.

121. Flouros F, Pistikou V, Plakandaras V. Geopolitical risk as a determinant of renewable energy investments. Energies 2022;15:1498.

122. Liu W, Li X, Liu C, Wang M, Liu L. Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks. Resour Policy 2023;80:103183.

123. Nassar NT, Brainard J, Gulley A, et al. Evaluating the mineral commodity supply risk of the U.S. manufacturing sector. Sci Adv 2020;6:eaay8647.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/