REFERENCES

1. Björk M, Short F, Mcleod E, Beer S. Managing seagrasses for resilience to climate change. Gland, Switzerland: IUCN; 2008, 56p. Available from: https://www.preventionweb.net/files/9648_20080241.pdf [Last accessed on 28 Sep 2023].

2. Nellemann C, Corcoran E, Duarte CM, et al. Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. 2009. Available from: https://policycommons.net/artifacts/1375378/blue-carbon/1989638/ [Last accessed on 28 Sep 2023].

3. Poppe KL, Rybczyk JM. Carbon sequestration in a pacific northwest eelgrass (Zostera marina) meadow. Northwest Sci 2018;92:80-91.

4. Bouwer L, Capriolo A, Chiabai A, et al. Chapter 4 - upscaling the impacts of climate change in different sectors and adaptation strategies. In: Adapting to Climate Change in Europe. Elsevier; 2018. pp. 173-243.

5. Alongi DM. Current status and emerging perspectives of coastal blue carbon ecosystems. Carbon Footprints 2023;2:12.

6. Grimsditch G, Alder J, Nakamura T, Kenchington R, Tamelander J. The blue carbon special edition - Introduction and overview. Ocean Coast Manag 2013;83:1-4.

7. Lavery PS, Mateo MÁ, Serrano O, Rozaimi M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 2013;8:e73748.

8. Rozaimi M, Serrano O, Lavery PS. Comparison of carbon stores by two morphologically different seagrasses. J R Soc West Aust 2013;96:81-3. Available from: https://www.proquest.com/openview/3648688ca12e53c5b5a4f805d1026548/1?pq-origsite=gscholar&cbl=136100 [Last accessed on 28 Sep 2023]

9. Mcleod E, Chmura GL, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 2011;9:552-60.

10. Serrano O, Gómez-López DI, Sánchez-Valencia L, et al. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Sci Rep 2021;11:11067.

11. Garrard SL, Beaumont NJ. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Mar Pollut Bull 2014;86:138-46.

12. Zhong C, Li T, Bi R, et al. A systematic overview, trends and global perspectives on blue carbon: a bibliometric study (2003-2021). Ecol Indic 2023;148:110063.

13. Marbà N, Arias-ortiz A, Masqué P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 2015;103:296-302.

14. Arias-Ortiz A, Masqué P, Garcia-Orellana J, et al. Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems - setting the record straight. Biogeosci Dis 2018;15:1-47.

15. Bos AR, Bouma TJ, de Kort GL, van Katwijk MM. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuar Coast Shelf Sci 2007;74:344-8.

16. Paquier A, Meulé S, Anthony EJ, Bernard G. Sedimentation and erosion patterns in a low shoot-density Zostera noltii meadow in the fetch-limited Berre lagoon, Mediterranean France. J Coast Res 2014;70:563-7.

17. Gacia E, Duarte CM. Sediment retention by a mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 2001;52:505-14.

18. Macreadie PI, Allen K, Kelaher BP, Ralph PJ, Skilbeck CG. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob Chang Biol 2012;18:891-901.

19. Serrano O, Lavery PS, Rozaimi M, Mateo MÁ. Influence of water depth on the carbon sequestration capacity of seagrasses. Glob Biogeochem Cy 2014;28:950-61.

20. Miyajima T, Hori M, Hamaguchi M, et al. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Glob Biogeochem Cy 2015;29:397-415.

21. Serrano O, Ricart AM, Lavery PS, et al. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows. Biogeosciences 2016;13:4581-94.

22. Villa JA, Bernal B. Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecol Eng 2018;114:115-28.

23. Duarte CM, Kennedy H, Marbà N, Hendriks I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast Manag 2013;83:32-8.

24. Ward RD, Teasdale PA, Burnside NG, Joyce CB, Sepp K. Recent rates of sedimentation on irregularly flooded Boreal Baltic coastal wetlands: responses to recent changes in sea level. Geomorphology 2014;217:61-72.

25. Alongi D, Sasekumar A, Chong V, et al. Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land-ocean-atmosphere exchange in peninsular Malaysia. Mar Geol 2004;208:383-402.

26. Hyndes GA, Heck KL Jr, Vergés A, et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 2016;66:938-48.

27. Côté-laurin M, Benbow S, Erzini K. The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar. Cont Shelf Res 2017;138:132-41.

28. Arias-Ortiz A, Serrano O, Masqué P, et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat Clim Chang 2018;8:338-44.

29. Macreadie PI, Anton A, Raven JA, et al. The future of blue carbon science. Nat Commun 2019;10:3998.

30. Potouroglou M, Bull JC, Krauss KW, et al. Measuring the role of seagrasses in regulating sediment surface elevation. Sci Rep 2017;7:11917.

31. Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci USA 2009;106:6182-6.

32. Fourqurean JW, Duarte CM, Kennedy H, et al. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 2012;5:505-9.

33. Robins PE, Skov MW, Lewis MJ, et al. Impact of climate change on UK estuaries: a review of past trends and potential projections. Estuar Coast Shelf Sci 2016;169:119-35.

34. Shields E, Moore K, Parrish D. Adaptations by zostera marina dominated seagrass meadows in response to water quality and climate forcing. Diversity 2018;10:125.

35. Leonardi N, Carnacina I, Donatelli C, et al. Dynamic interactions between coastal storms and salt marshes: a review. Geomorphology 2018;301:92-107.

36. Waller MP, Long AJ. Holocene coastal evolution and sea-level change on the southern coast of England: a review. J Quaternary Sci 2003;18:351-9.

37. Cundy AB, Croudace IW. Sediment accretion and recent sea-level rise in the solent, Southern England: inferences from radiometric and geochemical studies. Estuar Coast Shelf Sci 1996;43:449-67.

38. Dyer K. The distribution and movement of sediment in the Solent, southern England. Mar Geol 1971;11:175-87.

39. Bray MJ, Carter DJ, Hooke JM. Littoral cell definition and budgets for central Southern England. J Coast Res 1995;11:381-400. Available from: https://www.jstor.org/stable/4298347 [Last accessed on 28 Sep 2023]

40. SCOPAC. East Cowes to Culver Cliff; 2003, 30p. Available from: https://www.scopac.org.uk/sts/ne-iow.html [Last accessed on 28 Sep 2023].

41. New Forest District Council. SCOPAC sediment transport study, 2017. Available from: www.scopac.org.uk/sts [Last accessed on 28 Sep 2023].

42. Appleby P, Oldfield F. Application of lead-210 to sedimentation studies. In: Harmon, S editor. Uranium series disequilibrium: application to earth, marine and environmental science. 2nd ed.; Oxford: Clarendon Press; Oxford; New York: Oxford University Press; 1992. pp. 731-83. Available from: https://inis.iaea.org/search/search.aspx?orig_q=RN:25066379 [Last accessed on 28 Sep 2023].

43. Cundy A, Kortekaas S, Dewez T, et al. Coastal wetlands as recorders of earthquake subsidence in the Aegean: a case study of the 1894 Gulf of Atalantiearthquakes, central Greece. Mar Geol 2000;170:3-26.

44. Mizugaki S, Nakamura F, Araya T. Using dendrogeomorphology and 137Cs and 210Pb radiochronology to estimate recent changes in sedimentation rates in Kushiro Mire, Northern Japan, resulting from land use change and river channelization. Catena 2006;68:25-40.

45. Lima MAC, Ward RD, Joyce CB. Environmental drivers of sediment carbon storage in temperate seagrass meadows. Hydrobiologia 2020;847:1773-92.

46. Amaral Camara Lima M, Ward RD, Joyce CB, Kauer K, Sepp K. Carbon stocks in southern England’s intertidal seagrass meadows. Estuar Coast Shelf Sci 2022;275:107947.

47. Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol 1922;30:377-92.

48. Folk RL, Ward WC. Brazos river bar [Texas]; a study in the significance of grain size parameters. J Sediment Res 1957;27:3-26.

49. Krishnaswamy S, Lal D, Martin J, Meybeck M. Geochronology of lake sediments. Earth Planet Sci Lett 1971;11:407-14.

50. Appleby P, Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 1978;5:1-8.

51. Appleby P. Chronostratigraphic techniques in recent sediments. In: Tracking environmental change using lake sediments. The Netherlands: Kluwer Academic Publishers; 2001. pp 171-203. Available from: https://link.springer.com/chapter/10.1007/0-306-47669-x_9 [Last accessed on 28 Sep 2023].

52. Andersen TJ. Some practical considerations regarding the application of 210Pb and 137Cs dating to estuarine sediments. In: Weckström K, Saunders K, Gell P, Skilbeck C, editors. Applications of paleoenvironmental techniques in estuarine studies, Dordrecht: Springer; 2017, pp. 121-40. Available from: https://link.springer.com/chapter/10.1007/978-94-024-0990-1_6 [Last accessed on 28 Sep 2023].

53. Conover WJ, Iman RL. Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 1981;35:124-9.

54. Johannessen SC. How can blue carbon burial in seagrass meadows increase the long-term, net sequestration of carbon? A critical review. Environ Res Lett 2022;17:093004.

55. Oldfield F, Appleby PG, Battarbee RW. Alternative 210Pb dating: results from the New Guinea highlands and lough Erne. Nature 1978;271:339-42.

56. Breithaupt JL, Smoak JM, Smith TJ, Sanders CJ. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades: carbon Burial in the coastal everglades. J Geophys Res Biogeosci 2014;119:2032-48.

57. Shennan I. Handbook of sea-level research. In: Shennan I, Long AJ, Horton BP, editors. Handbook of Sea-Level Research. Wiley; 2015. pp. 3-25.

58. Gardner L, Sharma P, Moore W. A regeneration model for the effect of bioturbation by fiddler crabs on 210Pb profiles in salt marsh sediments. J Environ Radioact 1987;5:25-36.

59. Cearreta A, Irabien M, Ulibarri I, Yusta I, Croudace I, Cundy A. Recent salt marsh development and natural regeneration of reclaimed areas in the plentzia estuary, N. Spain. Estuar Coast Shelf Sci 2002;54:863-86.

60. Haslett S, Cundy A, Davies C, Powell E, Croudace IW. Salt marsh sedimentation over the past c. 120 years along the west Cotentin coast of Normandy (France): relationship to sea-level rise and sediment supply. J Coastal Res 2003;19:609-20. Available from: https://www.jstor.org/stable/4299202 [Last accessed on 28 Sep 2023]

61. Swales A, Bentley SJ, Lovelock CE. Mangrove-forest evolution in a sediment-rich estuarine system: opportunists or agents of geomorphic change? Earth Surf Processes Landf 2015;40:1672-87.

62. Jankowska E, Michel LN, Zaborska A, Włodarska-kowalczuk M. Sediment carbon sink in low-density temperate eelgrass meadows (Baltic Sea). JGR Biogeosci 2016;121:2918-34.

63. Sanders CJ, Smoak JM, Sanders LM, Waters MN, Patchineelam SR, Ketterer ME. Intertidal mangrove mudflat 240+239Pu signatures, confirming a 210Pb geochronology on the southeastern coast of Brazil. J Radioanal Nucl Chem 2010;283:593-6.

64. Macreadie PI, Ewers-Lewis JC, Whitt AA, et al. Comment on geoengineering with seagrasses: is credit due where credit is given? Environ Res Lett 2018;13:028001.

65. Alongi D, Wattayakorn G, Pfitzner J, et al. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Mar Geol 2001;179:85-103.

66. Greiner JT, McGlathery KJ, Gunnell J, McKee BA. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 2013;8:e72469.

67. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 2013;3:961-8.

68. Baskaran M, Santschi PH. Particulate and dissolved 210Pb activities in the shelf and slope regions of the Gulf of Mexico waters. Cont Shelf Res 2002;22:1493-510.

69. Bentley SJ, Kahlmeyer E, Bustin MR. Patterns and mechanisms of fluvial sediment flux and accumulation in two subarctic fjords: Nachvak and Saglek Fjords, Nunatsiavut, Canada. Can J Earth Sci 2012;49:1200-15.

70. Muehlstein LK. Perspectives on the wasting disease of eelgrass Zostera marina. Dis Aquat Org 1988;7:211-21. Available from: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19815612 [Last accessed on 28 Sep 2023].

71. Marsden A, Scott A. Inventory of eelgrass beds in Hampshire and the Isle of wight, section 2: data. Version 6. 7 May 2015. Hampshire, UK: Hampshire and Isle of Wight Wildlife Trust. Available from: https://www.researchgate.net/publication/283350752_Inventory_of_Eelgrass_Beds_in_Hampshire_and_the_Isle_of_Wight_Section_2_Data/comments [Last accessed on 28 Sep 2023].

72. Kennedy H, Beggins J, Duarte CM, et al. Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cy 2010:24.

73. Oreska MPJ, McGlathery KJ, Emmer IM, et al. Comment on Geoengineering with seagrasses: is credit due where credit is given? 2018. Available from: https://iopscience.iop.org/article/10.1088/1748-9326/aaae72 [Last accessed on 28 Sep 2023].

74. Schile LM, Kauffman JB, Crooks S, Fourqurean JW, Glavan J, Megonigal JP. Limits on carbon sequestration in arid blue carbon ecosystems. Ecol Appl 2017;27:859-74.

75. Haigh I, Ozsoy O, Wadey M. et al. An improved database of coastal flooding in the United Kingdom from 1915 to 2016. Sci Data 2017;4:170100.

76. Amone-Mabuto M, Bandeira S, da Silva A. Long-term changes in seagrass coverage and potential links to climate-related factors: the case of Inhambane Bay, southern Mozambique. WIO J Mar Sci 2017;16:13-25. Available from: https://www.ajol.info/index.php/wiojms/article/view/159678 [Last accessed on 28 Sep 2023]

77. Preen A, Lee Long W, Coles R. Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 1995;52:3-17.

78. Heck JR, Sullivan KL, Zande MJJM, Moncreiff CA. An ecological analysis of seagrass meadows of the Gulf Islands National Seashore: years one and two: seasonal assessment and inventory: interaction studies and assessment/inventory; 1995. Available from: https://cfpub.epa.gov/ols/catalog/advanced_brief_record.cfm?&FIELD1=AUTHOR&INPUT1=Sullivan%20AND%20J%20AND%20S&TYPE1=ALL&LOGIC1=AND&COLL=&SORT_TYPE=MTIC&item_count=17&item_accn=508851 [Last accessed on 28 Sep 2023].

79. Fourqurean JW, Rutten LM. The impact of Hurricane Georges on soft-bottom, back reef communities: site- and species-specific effects in south Florida seagrass beds. Bull Mar Sci 2004;75:239-57. Available from: https://www.ingentaconnect.com/content/umrsmas/bullmar/2004/00000075/00000002/art00007 [Last accessed on 28 Sep 2023]

80. Anton A, Cebrian J, Duarte CM, Heck J, Kenneth L, Goff J. Low impact of Hurricane Katrina on seagrass community structure and functioning in the Northern Gulf of Mexico. Bull Mar Sci 2009;85:45-59. Available from: https://www.ingentaconnect.com/content/umrsmas/bullmar/2009/00000085/00000001/art00004 [Last accessed on 28 Sep 2023]

81. Pihl L, Baden S, Kautsky N, et al. Shift in fish assemblage structure due to loss of seagrass Zostera marina habitats in Sweden. Estuar Coast Shelf Sci 2006;67:123-32.

82. Lee K, Park SR, Kim YK. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 2007;350:144-75.

83. Collier CJ, Waycott M. Temperature extremes reduce seagrass growth and induce mortality. Mar Pollut Bull 2014;83:483-90.

84. Egea LG, Jiménez-Ramos R, Vergara JJ, Hernández I, Brun FG. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar Pollut Bull 2018;134:14-26.

85. George R, Gullström M, Mangora MM, Mtolera MSP, Björk M. High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species. Ecol Evol 2018;8:4508-17.

86. Hughes BB, Lummis SC, Anderson SC, Kroeker KJ. Unexpected resilience of a seagrass system exposed to global stressors. Glob Chang Biol 2018;24:224-34.

87. Burkholz C, Duarte CM, Garcias-Bonet N. Thermal dependence of seagrass ecosystem metabolism in the Red Sea. Mar Ecol Prog Ser 2019;614:79-90.

88. Chollett I, Bone D, Pérez D. Effects of heavy rainfall on Thalassia testudinum beds. Aquat Bot 2007;87:189-95.

89. Campbell SJ, Mckenzie LJ. Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuar Coast Shelf Sci 2004;60:477-90.

90. Nakamura Y. Patterns in fish response to seagrass bed loss at the Southern Ryukyu Islands, Japan. Mar Biol 2010;157:2397-406.

91. Horinouchi M, Tongnunui P, Nanjyo K, Nakamura Y, Sano M, Ogawa H. Differences in fish assemblage structures between fragmented and continuous seagrass beds in Trang, Southern Thailand. Fish Sci 2009;75:1409-16.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/