REFERENCES
1. Alongi DM. Blue carbon: coastal sequestration for climate change mitigation. Cham, Switzerland: Springer; 2018. pp. 1-8.
2. Crooks S, Windham-Myers L, Trozler TG. Defining blue carbon: the emergence of a climate content for coastal carbon dynamics. In: Windham-Myers L, Crooks S, Troxler TG, editors. A blue carbon primer: the state of coastal wetland carbon science, practice, and policy. Boca Raton: CRC Press; 2019. pp. 1-8.3.
3. Nelleman C, Corcoran E, Duarte CM, et al. Blue carbon: a rapid response assessment. Arendal, Norway: UNEP; 2009. pp. 1-78.4.
4. Littles CJ, Jackson CA, DeWitt TH, Harwell MC. Linking people to coastal habitats: a meta-analysis of final ecosystem goods and services on the coast. Ocean Coast Manag 2018;165:356-69.
5. Sifleet S, Pendleton L, Murray BC. State of the science on coastal blue carbon: a summary for policy makers. Nicholas Institute for Environmental Policy Solutions Report NI R 11-06. Durham, USA: Duke University; 2011. pp. 1-43.
6. Alongi DM. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. J Mar Sci Eng 2020;8:767.
7. Hill R, Bellgrove A, Macreadie PI, et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol Oceanogr 2015;60:1689-706.
8. Gao G, Beardall J, Jin P, Gao L, Xie S, Gao K. A review of existing and potential blue carbon contributions to climate change mitigation in the Anthropocene. J Appl Ecol 2022;59:1686-99.
9. Duarte CM, Gattuso J, Hancke K, et al. Global estimates of the extent and production of macroalgal forests. Global Ecol Biogeogr 2022;31:1422-39.
10. Carnell PE, Palacios MM, Waryszak P, Trevathan-Tackett SM, Masqué P, Macreadie PI. Blue carbon drawdown by restored mangrove forests improves with age. J Environ Manag 2022;306:114301.
11. Marchand C. Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). For Ecol Manag 2017;384:92-9.
12. Monga E, Mangora MM, Trettin CC. Impact of mangrove planting on forest biomass carbon and other structural attributes in the Rufiji Delta, Tanzania. Global Ecol Conserv 2022;35:e02100.
13. Thura K, Serrano O, Gu J, et al. Mangrove restoration built soil organic carbon stocks over six decades: a chronosequence study. J Soil Sediment 2023;23:1193-203.
14. Azman M, Sharma S, Liyana Hamzah M, Mohamad Zakaria R, Palaniveloo K, Mackenzie RA. Total ecosystem blue carbon stocks and sequestration potential along a naturally regenerated mangrove forest chronosequence. For Ecol Manag 2023;527:120611.
15. Burden A, Garbutt A, Evans CD. Effect of restoration on saltmarsh carbon accumulation in Eastern England. Biol Lett 2019;15:20180773.
16. Drexler JZ, Woo I, Fuller CC, Nakai G. Carbon accumulation and vertical accretion in a restored versus historic salt marsh in southern Puget Sound, Washington, United States. Restor Ecol 2019;27:1117-27.
17. Wang C, Li H, Cai T, Sun X. Variation of soil carbon and nitrogen storage in a natural restoration chronosequence of reclaimed temperate marshes. Global Ecol Conserv 2021;27:e01589.
18. Abbott KM, Elsey-Quirk T, DeLaune RD. Factors influencing blue carbon accumulation across a 32-year chronosequence of created coastal marshes. Ecosphere 2019;10:e02828.
19. Dontis EE, Radabaugh KR, Chappel AR, Russo CE, Moyer RP. Carbon storage increases with site age as created salt marshes transition to mangrove forests in Tampa Bay, Florida (USA). Estuar Coast 2020;43:1470-88.
20. Thorhaug A, Poulos HM, López-Portillo J, Ku TCW, Berlyn GP. Seagrass blue carbon dynamics in the Gulf of Mexico: stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Sci Total Environ 2017;605-6:626-36.
21. Greiner JT, McGlathery KJ, Gunnell J, McKee BA. Seagrass restoration enhances "blue carbon" sequestration in coastal waters. PLoS One 2013;8:e72469.
22. Marbà N, Arias-Ortiz A, Masqué P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 2015;103:296-302.
23. Van Dam BR, Zeller MA, Lopes C, et al. Calcification-driven CO2 emissions exceed “blue carbon” sequestration in a carbonate seagrass meadow. Sci Adv 2021;7:eabj1372.
24. Smale D, Burrows M, Evans A, et al. Linking environmental variables with regional- scale variability in ecological structure and standing stock of carbon within UK kelp forests. Mar Ecol Prog Ser 2016;542:79-95.
25. Krause-Jensen D, Lavery P, Serrano O, Marbà N, Masque P, Duarte CM. Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biol Lett 2018;14:20180236.
26. Watanabe K, Yoshida G, Hori M, Umezawa Y, Moki H, Kuwae T. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 2020;17:2425-40.
27. Mack SK, Lane RR, Holland K, Bauer J, Cole J, Cowan R. A blue carbon pilot project: lessons learned. Carbon Manag 2022;13:420-34.
28. Williams P, Faber P. Salt marsh restoration experience in San Francisco Bay. J Coast Res 2001;27:203-11. Available from: https://www.researchgate.net/publication/267198245_Salt_Marsh_Restoration_Experience_in_San_Francisco_Bay [Last accessed on 19 July 2022]
29. Lewis RR. Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng 2005;24:403-18.
30. Dencer-Brown AM, Shilland R, Friess D, et al. Integrating blue: how do we make nationally determined contributions work for both blue carbon and local coastal communities? Ambio 2022;51:1978-93.
31. Macreadie PI, Nielsen DA, Kelleway JJ, et al. Can we manage coastal ecosystems to sequester more blue carbon? Front Ecol Environ 2017;15:206-13.
32. Vanderklift MA, Herr D, Lovelock CE, Murdiyarso D, Raw JL, Steven ADL. A guide to international climate mitigation policy and finance frameworks relevant to the protection and restoration of blue carbon ecosystems. Front Mar Sci 2022;9:872064.
33. Lovelock CE, Duarte CM. Dimensions of blue carbon and emerging perspectives. Biol Lett 2019;15:20180781.
34. Duncan C, Primavera JH, Hill NAO, Wodehouse DCJ, Koldewey HJ. Potential for return on investment in rehabilitation-oriented blue carbon projects: accounting methodologies and project strategies. Front For Glob Chang 2022;4:775341.
35. Gallagher JB, Shelamoff V, Layton C, Rodil I. Seaweed ecosystems may not mitigate CO2 emissions. ICES J Mar Sci 2022;79:585-92.
36. Ricart AM, Krause-Jensen D, Hancke K, Price NN, Masqué P, Duarte CM. Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics. Environ Res Lett 2022;17:081003.
37. Trevathan-Tackett SM, Kelleway J, Macreadie PI, Beardall J, Ralph P, Bellgrove A. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 2015;96:3043-57.
38. Queirós AM, Stephens N, Widdicombe S, et al. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol Monogr 2019;89:e01366.
39. Perkins AK, Santos IR, Rose AL, et al. Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches: a mesocosm experiment with implications for blue carbon. Biogeochemistry 2022;160:159-75.
40. Hidayah N, Ng CT, Arina N, Fairoz M, Rozaimi M. Macroalgal and mangrove provenances demonstrate their relevance in contributing to the blue carbon pool of a tropical seagrass meadow. Ecol Res 2022;37:21-32.
41. Kwan V, Fong J, Ng CSL, Huang D. Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon. Sci Total Environ 2022;828:154369.
42. Chen ZL, Lee SY. Tidal flats as a significant carbon reservoir in global coastal ecosystems. Front Mar Sci 2022;9:900896.
43. Chen J, Wang D, Li Y, et al. The carbon stock and sequestration rate in tidal flats from coastal China. Global Biogeochem Cycles 2020;34:e2020GB006772.
44. Murray NJ, Phinn SR, DeWitt M, et al. The global distribution and trajectory of tidal flats. Nature 2019;565:222-5.
45. Warner R, Kaidonis M, Dun O, et al. Opportunities and challenges for mangrove carbon sequestration in the Mekong River Delta in Vietnam. Sustain Sci 2016;11:661-77.
46. Macreadie PI, Robertson AI, Spinks B, et al. Operationalizing marketable blue carbon. One Earth 2022;5:485-92.
47. Vanderklift MA, Marcos-Martinez R, Butler JRA, et al. Constraints and opportunities for market-based finance for the restoration and protection of blue carbon ecosystems. Mar Policy 2019;107:103429.
48. Davidson NC, Fluet-chouinard E, Finlayson CM. Global extent and distribution of wetlands: trends and issues. Mar Freshwater Res 2018;69:620-7.
49. Taillardat P, Friess DA, Lupascu M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol Lett 2018;14:20180251.
50. Aoki LR, Mcglathery KJ, Wiberg PL, et al. Seagrass recovery following marine heat wave influences sediment carbon stocks. Front Mar Sci 2021;7:576784.
51. Senger DF, Saavedra Hortua DA, Engel S, Schnurawa M, Moosdorf N, Gillis LG. Impacts of wetland dieback on carbon dynamics: a comparison between intact and degraded mangroves. Sci Total Environ 2021;753:141817.
52. Wang F, Sanders CJ, Santos IR, et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci Rev 2021;8:nwaa296.
53. Chatting M, Al-maslamani I, Walton M, et al. Future mangrove carbon storage under climate change and deforestation. Front Mar Sci 2022;9:781876.
54. Bouillon S, Borges AV, Castañeda-Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem Cycles 2008;22:GB2013.
55. Alongi DM. The energetics of mangrove forests. Dordrecht, The Netherlands: Springer; 2009, pp. 163-7.
56. Alongi DM. Lateral export and sources of subsurface dissolved carbon and alkalinity in mangroves: revising the blue carbon budget. J Mar Sci Eng 2022;10:1916.
57. Chen X, Santos IR, Call M, et al. The mangrove CO2 pump: tidally driven pore-water exchange. Limnol Oceanogr 2021;66:1563-77.
58. Wu Z, Zhu H, Tang D, Wang Y, Zidan A, Cui Z. Submarine groundwater discharge as a significant export of dissolved inorganic carbon from a mangrove tidal creek to Qinglan Bay (Hainan Island, China). Cont Shelf Res 2021;223:104451.
59. Wang ZA, Kroeger KD, Ganju NK, Gonneea ME, Chu SN. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol Oceanogr 2016;61:1916-31.
60. Chen X, Du J, Yu X, Wang X. Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary. Acta Oceanol Sin 2021;40:32-43.
61. Osburn CL, Mikan MP, Etheridge JR, Burchell MR, Birgand F. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary. J Geophys Res Biogeosci 2015;120:1430-49.
62. Codden CJ, Edwards CR, Stubbins A. Non-conservative behavior of dissolved organic carbon in a Georgia salt marsh creek indicates summer outwelling. Estuar Coast Shelf Sci 2022;265:107709.
63. Correa RE, Xiao K, Conrad SR, et al. Groundwater carbon exports exceed sediment carbon burial in a salt marsh. Estuar Coast 2022;45:1545-61.
64. Ismail RO, Asplund ME, Gullström M, et al. Effects of calcification on air-water CO2 fluxes in tropical seagrass meadows: a mesocosm experiment. J Exp Mar Biol Ecol 2023;561:151864.
65. Majtényi-hill C, Reithmaier G, Yau YY, Serrano O, Piñeiro-juncal N, Santos IR. Inorganic carbon outwelling from a Mediterranean seagrass meadow using radium isotopes. Estuar Coast Shelf Sci 2023;283:108248.
66. Saderne V, Fusi M, Thomson T, et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol Oceanogr Lett 2021;6:61-7.
67. Reithmaier GMS, Ho DT, Johnston SG, Maher DT. Mangroves as a source of greenhouse gases to the atmosphere and alkalinity and dissolved carbon to the coastal ocean: a case study from the everglades national park, Florida. J Geophys Res Biogeosci 2020;125:e2020JPG005812.
68. Cabral A, Dittmar T, Call M, et al. Carbon and alkalinity outwelling across the groundwater-creek-shelf continuum off Amazonian mangroves. Limnol Oceanogr Lett 2021;6:369-78.
69. Reithmaier GMS, Johnston SG, Junginger T, et al. Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink. Global Biogeochem Cycles 2021;35:e2020GB006785.
70. Yau YY, Xin P, Chen X, et al. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnol Oceanogr 2022;67:S158-70.
71. Sippo JZ, Maher DT, Tait DR, Holloway C, Santos IR. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochem Cycles 2016;30:753-66.
72. Banerjee K, Paul R. Role of abiotic factors in enhancing the capacity of mangroves in reducing ocean acidification. Ecotoxicology 2022;31:1169-88.
73. Hendriks IE, Olsen YS, Ramajo L, et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 2014;11:333-46.
74. Luan W, Li H, Zhang L, Liu J. Enhalus acoroides efficiently alleviate ocean acidification by shifting modes of inorganic carbon uptake and increasing photosynthesis when pH drops. Mar Environ Res 2023;186:105896.
75. Job S, Sekadende B, Yona G, George R, Lugendo BR, Kimirei IA. Effect of seagrass cover loss on seawater carbonate chemistry: implications for the potential of seagrass meadows to mitigate ocean acidification. Reg Stud Mar Sci 2023;60:102816.
76. Ricart AM, Ward M, Hill TM, et al. Coast-wide evidence of low pH amelioration by seagrass ecosystems. Glob Chang Biol 2021;27:2580-91.
77. Guilini K, Weber M, de Beer D, et al. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification. PLoS ONE 2017;12:e0181531.
78. Bergstrom E, Silva J, Martins C, Horta P. Seagrass can mitigate negative ocean acidification effects on calcifying algae. Sci Rep 2019;9:1932.
79. Wallace RB, Peterson BJ, Gobler CJ. Ecosystem metabolism modulates the dynamics of hypoxia and acidification across temperate coastal habitat types. Front Mar Sci 2021;8:611781.
80. Hunt CW, Salisbury JE, Vandemark D. Controls on buffering and coastal acidification in a temperate estuary. Limnol Oceanogr 2022;67:1328-42.
81. Chen X, Zhu P, Zhang Y, Li L. Plum rain enhances porewater greenhouse gas fluxes and weakens the acidification buffering potential in saltmarshes. J Hydrol 2023;616:128686.
82. Ling SD, Cornwall CE, Tilbrook B, Hurd CL. Remnant kelp bed refugia and future phase-shifts under ocean acidification. PLoS One 2020;15:e0239136.
83. Xiao X, Agustí S, Yu Y, et al. Seaweed farms provide refugia from ocean acidification. Sci Total Environ 2021;776:145192.
84. Doo SS, Leplastrier A, Graba-Landry A, Harianto J, Coleman RA, Byrne M. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol Evol 2020;10:8465-75.
85. Leal PP, Hurd CL, Fernández PA, Roleda MY. Ocean acidification and kelp development: reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J Phycol 2017;53:557-66.
86. Young CS, Gobler CJ. Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS One 2016;11:e0155152.
87. Britton D, Cornwall CE, Revill AT, Hurd CL, Johnson CR. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata. Sci Rep 2016;6:26036.
88. Matsui N, Meepol W, Chukwamdee J. Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. J Mar Sci Eng 2015;3:1404-24.
89. Gleeson J, Santos IR, Maher DT, Golsby-Smith L. Groundwater-surface water exchange in a mangrove tidal creek: evidence from natural geochemical tracers and implications for nutrient budgets. Mar Chem 2013;156:27-37.
90. Maher DT, Santos IR, Schulz KG, Call M, Jacobsen GE, Sanders CJ. Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system. Geophys Res Lett 2017;44:4889-96.
91. Choi Y, Wang Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochem Cycles 2004;18.
92. Kristensen E, Bouillon S, Dittmar T, Marchand C. Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 2008;89:201-19.
93. Oreska MPJ, Wilkinson GM, Mcglathery KJ, Bost M, Mckee BA. Non-seagrass carbon contributions to seagrass sediment blue carbon. Limnol Oceanogr 2018;63:S3-18.
94. Krause JR, Hinojosa-Corona A, Gray AB, et al. Beyond habitat boundaries: organic matter cycling requires a system-wide approach for accurate blue carbon accounting. Limnol Oceanogr 2022;67:S6-18.
95. Drexler JZ, Davis MJ, Woo I, De La Cruz S. Carbon sources in the sediments of a restoring vs. historically unaltered salt marsh. Estuar Coast 2020;43:1345-60.
96. Hemminga MA, Slim FJ, Kazungu J, Ganssen J, Nieuwenhuize J, Kruyt NM. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs. Mar Ecol Prog Ser 1994;106:291-301. Available from: https://www.int-res.com/articles/meps/106/m106p291.pdf [Last accessed on 19 July 2022]
97. Chen G, Azkab MH, Chmura GL, et al. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Sci Rep 2017;7:42406.
98. Huxham M, Whitlock D, Githaiga M, Dencer-Brown A. Carbon in the coastal seascape: how interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage. Curr For Rep 2018;4:101-10.
99. Liu S, Trevathan-Tackett SM, Ewers Lewis CJ, Huang X, Macreadie PI. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ Sci Technol 2020;54:14750-60.
100. Guerra-Vargas LA, Gillis LG, Mancera-Pineda JE. Stronger together: do coral reefs enhance seagrass meadows “blue carbon” potential? Front Mar Sci 2020;7:628.
101. Mishra AK, Apte D, Farooq SH. Ecological connectivity of seagrasses with mangroves increases the carbon storage of tropical seagrass meadows of an island ecosystem. Res Square 2021.
102. Akhand A, Watanabe K, Chanda A, et al. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Sci Total Environ 2021;752:142190.
103. Ren L, Jensen K, Porada P, Mueller P. Biota-mediated carbon cycling-A synthesis of biotic-interaction controls on blue carbon. Ecol Lett 2022;25:521-40.
104. Atwood TB, Connolly RM, Ritchie EG, et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Chang 2015;5:1038-45.
105. Xiao K, Wilson AM, Li H, et al. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnol Oceanogr 2021;66:14-29.
106. Grow AK, Schutte CA, Roberts BJ. Fiddler crab burrowing increases salt marsh greenhouse gas emissions. Biogeochemistry 2022;158:73-90.
107. Lyimo LD, Gullström M, Lyimo TJ, et al. Shading and simulated grazing increase the sulphide pool and methane emission in a tropical seagrass meadow. Mar Pollut Bull 2018;134:89-93.
108. Dahl M, Mcmahon K, Lavery PS, Hamilton SH, Lovelock CE, Serrano O. Ranking the risk of CO2 emissions from seagrass soil carbon stocks under global change threats. Glob Environ Chang 2023;78:102632.
109. Saderne V, Geraldi NR, Macreadie PI, et al. Role of carbonate burial in blue carbon budgets. Nat Comm 2019;10:1106.
110. Howard JL, Creed JC, Aguiar MVP, Fourqurean JW. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnol Oceanogr 2018;63:160-72.
111. Kalokora OJ, Gullström M, Buriyo AS, Mtolera MSP, Björk M. Seagrass meadows mixed with calcareous algae have higher plant productivity and sedimentary blue carbon storage. Ecol Evol 2022;12:e8579.
112. Roughan BL, Kellman L, Smith E, Chmura GL. Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries. Environ Res Lett 2018;13:044034.
113. Schutte CA, Moore WS, Wilson AM, Joye SB. Groundwater-driven methane export reduces salt marsh blue carbon potential. Global Biogeochem Cycles 2020;34:e2020GB0006587.
114. Rosentreter JA, Maher DT, Erler DV, Murray RH, Eyre BD. Methane emissions partially offset “blue carbon” burial in mangroves. Sci Adv 2018;4:eaao4985.
115. Jeffrey LC, Reithmaier G, Sippo JZ, et al. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytol 2019;224:146-54.
116. Malerba ME, Friess DA, Peacock M, et al. Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands. One Earth 2022;5:1336-41.
117. Li Y, Fu C, Zeng L, et al. Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats. Environ Sci Technol 2021;55:6495-504.
118. Gallagher JB, Prahalad V, Aalders J, Inorganic and black carbon hotspots constrain blue carbon mitigation services across tropical seagrass and temperate tidal marshes. Wetlands 2021;41:65-72.
119. Chew ST, Gallagher JB. Accounting for black carbon lowers estimates of blue carbon storage services. Sci Rep 2018;8:2553.
120. Gallagher JB, Chuan CH, Yap TK, Fredelina Dona WF. Carbon stocks of coastal seagrass in Southeast Asia may be far lower than anticipated when accounting for black carbon. Biol Lett 2019;15:20180745.
121. Lovelock CE, Ruess RW, Feller IC. CO2 efflux from cleared mangrove peat. PLoS One 2011;6:e21279.
122. Romero-Uribe HM, López-Portillo J, Reverchon F, Hernández ME. Effect of degradation of a black mangrove forest on seasonal greenhouse gas emissions. Environ Sci Pollut Res Int 2022;29:11951-65.
123. Grellier S, Janeau JL, Nhon DH, et al. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam). Sci Total Environ 2017;593-4:654-63.
124. Kitpakornsanti K, Pengthamkeerati P, Limsakul A, Worachanant P, Diloksumpun S. Greenhouse gas emissions from soil and water surface in different mangrove establishments and management in Ranong Biosphere Reserve, Thailand. Reg Stud Mar Sci 2022;56:102690.
125. Zhao X, Rivera-Monroy VH, Farfán LM, et al. Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA). Sci Rep 2021;11:13927.
126. Miller WD, Neubauer SC, Anderson IC. Effects of sea level induced disturbances on high salt marsh metabolism. Estuaries 2001;24:357-67.
127. Sanders-DeMott R, Eagle MJ, Kroeger KD, et al. Impoundment increases methane emissions in Phragmites-invaded coastal wetlands. Glob Chang Biol 2022;28:4539-57.
128. Barnes DKA. Blue carbon on polar and subpolar seabeds. In: Agarwal RK, editor. Carbon capture, utilization and sequestration. London: IntechOpen; 2018. pp. 37-56.
129. Barnes DKA, Fleming A, Sands CJ, Quartino ML, Deregibus D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos Trans A Math Phys Eng Sci 2018;376:20170176.
130. Barnes DKA, Sands CJ, Cook A, et al. Blue carbon gains from glacial retreat along antarctic fjords: what should we expect? Glob Chang Biol 2020;26:2750-5.
131. Zwerschke N, Sands CJ, Roman-Gonzalez A, et al. Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords. Glob Chang Biol 2022;28:8-20.
132. Morley SA, Souster TA, Vause BJ, Gerrish L, Peck LS, Barnes DKA. Benthic biodiversity, carbon storage and the potential for increasing negative feedbacks on climate change in shallow waters of the Antarctic peninsula. Biology 2022;11:320.
133. Braekman U, Pasotti F, Hoffmann R, et al. Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy. Commun Biol 2021;4:148.
134. Zaborska A, Włodarska-Kowalczuk M, Legeżyńska J, Jankowska E, Winogradow A, Deja K. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords - signs of maturing of Arctic fjordic systems? J Mar Syst 2018;180:112-23.
135. Włodarska-Kowalczuk M, Mazurkiewicz M, Górska B, Michel LN, Jankowska E, Zaborska A. Organic carbon origin, benthic faunal consumption, and burial in sediments of northern Atlantic and Arctic fjords (60-81°N). J Geophys Res Biogeosci 2019;124:3737-51.
136. Herbert LC, Michaud AB, Laufer-meiser K, et al. Tight benthic-pelagic coupling drives seasonal and interannual changes in iron-sulfur cycling in Arctic fjord sediments (Kongsfjorden, Svalbard). J Mar Syst 2022;225:103645.
137. Faust JC, Tessin A, Fisher BJ, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat Comm 2021;12:275.
138. Ward RD. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: impacts of climate change. Sci Total Environ 2020;748:141343.
139. Kelleway JJ, Saintilan N, Macreadie PI, et al. Geochemical analyses reveal the importance of environmental history for blue carbon sequestration. J Geophys Res Biogeosci 2017;122:1789-805.
140. Woodroffe CD, Thom BG, Chappell J. Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature 1985;317:711-3.
141. Hanebuth TJ, Proske U, Saito Y, Nguyen VL, Ta TKO. Early growth stage of a large delta - Transformation from estuarine-platform to deltaic-progradational conditions (the northeastern Mekong River Delta, Vietnam). Sediment Geol 2012;261-2:108-19.
142. Li Z, Saito Y, Mao L, et al. Mid-holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia. Quat Res 2012;78:386-99.
143. Kaal J, Martínez Cortizas A, Mateo MÁ, Serrano O. Deciphering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting. Sci Total Environ 2020;742:140554.
144. Kaal J, González JA, Emeterio LMS, Serrano O. Fingerprinting macrophyte blue carbon by pyrolysis-GC-compound specific isotope analysis (Py-CSIA). Sci Total Environ 2022;836:155598.
145. Tan L, Ge Z, Ji Y, et al. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss. Global Ecol Biogeogr 2022;31:2541-63.
146. Lovelock CE, Fourqurean JW, Morris JT. Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds. Front Mar Sci 2017;4:143.
147. Ruiz-Fernández AC, Sanchez-Cabeza J, Cuéllar-Martínez T, et al. Increasing salinization and organic carbon burial rates in seagrass meadows from an anthropogenically-modified coastal lagoon in southern Gulf of Mexico. Estuar Coast Shelf Sci 2020;242:106843.
148. Cuéllar-Martínez T, Ruiz-Fernández AC, Sanchez-Cabeza JA, et al. Temporal records of organic carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the Anthropocene. Global Planet Chang 2020;192:103215.
149. Cuellar-Martinez T, Ruiz-Fernández AC, Sanchez-Cabeza JA, Pérez-Bernal LH, Sandoval-Gil J. Relevance of carbon burial and storage in two contrasting blue carbon ecosystems of a north-east Pacific coastal lagoon. Sci Total Environ 2019;675:581-93.
150. Dahl M, Ismail R, Braun S, et al. Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments. Mar Environ Res 2022;176:105608.
151. Ma T, Li X, Bai J, Ding S, Zhou F, Cui B. Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Sci Total Environ 2019;655:741-50.
152. Kauffman JB, Heider C, Norfolk J, Payton F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol Appl 2014;24:518-27.
153. Kauffman JB, Bernardino AF, Ferreira TO, Bolton NW, de O Gomes LE, Nobrega GN. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecol Evol 2018;8:5530-40.
154. Bukoski JJ, Dronova I, Potts MD. Net loss statistics underestimate carbon emissions from mangrove land use and land cover change. Ecography 2022;2022:ecog.05982.
155. Kauffman JB, Hernandez Trejo H, del Carmen Jesus Garcia M, Heider C, Contreras WM. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecol Manag 2016;24:203-16.
156. Sasmito SD, Taillardat P, Clendenning JN, et al. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review. Glob Chang Biol 2019;25:4291-302.